
The Pattern Datatype

16 March 2018

Editorial note— This is a first public draft of a standard defining a regular expression di-
alect for use in FHISO standards. This document is not endorsed by the FHISOmembership,
and may be updated, replaced or obsoleted by other documents at any time.

The public tsc-public@fhiso.orgmailing list is the preferred place for comments, discussion
and other feedback on this draft.

Latest public version: https://fhiso.org/TR/patterns
This version: https://fhiso.org/TR/patterns-20180316

Editorial note—This document defines a “least-common denominator” regular expression
dialect. An explicit goal is to have all patterns be trivially modifiable to work with as many
mainstream regular expression engines and libraries as possible.

In particular, in interest of compatibility, the pattern in this document

— each defines a regular language (does not include back references).
— does not have named or general category classes (:alphanum:, \pL, etc.).
— does not define capturing groups, and thus does not need or support lazy quantifiers.
— does not have partial-string matching, and thus does not need to define if (a|an)

and (an|a)match differently.

1 Introduction

1.1 Conventions used

Where this standard gives a specific technical meaning to a word or phrase, that word or phrase is
formatted in bold text in its initial definition, and in italicswhenused elsewhere. The keywordsMUST,
MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED,
MAY and OPTIONAL in this standard are to be interpreted as described in [RFC 2119].

An application is conformant with this standard if and only if it obeys all the requirements and
prohibitions contained in this document, as indicated by use of the words MUST, MUST NOT, REQUIRED,
SHALL and SHALL NOT, and the relevant parts of its normative references. Standards referencing this
standardMUST NOT loosen any of the requirements and prohibitionsmade by this standard, nor place
additional requirements or prohibitions on the constructs defined herein.

Note— Derived standards are not allowed to add or remove requirements or prohibitions
on the facilities definedherein so as to preserve interoperability between applications. Data

https://tech.fhiso.org/tsc-public
https://tools.ietf.org/html/rfc2119

The Pattern Datatype

generated by one conformant applicationmust always be acceptable to another conformant
application, regardless of what additional standards each may conform to.

If a conformant application encounters data that does not conform to this standard, it MAY issue a
warning or error message, and MAY terminate processing of the document or data fragment.

This standard depends on FHISO’s Basic Concepts for Genealogical Standards standard. To be con-
formant with this standard, an application MUST also be conformant with [Basic Concepts]. Concepts
defined in that standard are used here without further definition.

Note — In particular, precise meaning of string, character, term, datatype, structured non-
language-tagged datatype, and pattern are given in [Basic Concepts].

Indented text in grey or coloured boxes does not form a normative part of this standard, and is la-
belled as either an example or a note.

Editorial note—Editorial notes, such as this, are used to record outstanding issues, or points
where there is not yet consensus; they will be resolved and removed for the final standard.
Examples and notes will be retained in the standard.

The grammar given here uses the form of EBNF notation defined in §6 of [XML], except that no sig-
nificance is attached to the capitalisation of grammar symbols. Conforming applications MUST NOT

generate data not conforming to the syntax given here, but non-conforming syntax MAY be accepted
and processed by a conforming application in an implementation-defined manner.

This standard uses prefix notation when discussing specific terms. The following prefix bindings are
assumed in this standard:

types https://terms.fhiso.org/types/

2 Pattern

As defined in [Basic Concepts], a pattern is a regular expression intended to provides a constraint
on the lexical space of a datatype. This document defines both the types:Pattern datatype and the
semantics of what it means for a string tomatch a pattern.

2.1 Matching and Languages

A pattern is an element of the types:Pattern datatype. Every pattern is said tomatch a (possibly-
infinite) set of strings. The set of strings that a particular pattern matches is defined by the contents
of the pattern itself, using the rules specified in this document.

Editorial note — This draft is inconsistent in its use of “match” vs “match”. It is not clear
which is preferable.

2

https://www.w3.org/TR/xml11/

The Pattern Datatype

[Basic Concepts] currently refers to “match” as an undefined word, which is convenient be-
cause not all uses of “match” in that document refer to matching a pattern (others match
EBNF productions, Accept headers, informal requirements, etc.) That flexibility is sup-
ported by not formally defining “match”.

Conversely, much of this document presents a formal definition of what it means tomatch
a pattern or its component parts. That formality suggests “match” should be a formally-
defined word.

As an alternative, the entire document could be re-written to define the “language of” a
pattern as many theoretical computer science text do, which would greatly reduce the oc-
currences of the word “match”. This draft has taken the position that “language” it too
important a word in other genealogical contexts for its formal definition herein to be wise.

Note — Those familiar with theoretic computer science might be used to referring to the
set of strings matched by a pattern as the “language of” that pattern, and referring to the
pattern itself as a “regular expression”. Since these terms are not necessary to define the
semantics of a pattern, and since “language” in particular has a second, more common, and
very important meaning in genealogy, this document does not make normative use of those
terms.

Example— Consider the pattern “[ab][cd]?”. The set of strings that that pattern matches
is {“a”, “ac”, “ad”, “b”, “bc”, “bd”}. We say that “[ab][cd]?” matches the string “a” and
does not match the string “aa”.

2.2 Hierarchical Definition of Patterns

This section presents a set of definitions that fully define both the lexical space of the types:Pattern
datatype and the set of stringsmatched by a given pattern. It does this by introducing and naming sev-
eral intermediate concepts. These intermediate concepts are presented for expository purposed only
andmay be changed or removed from future versions of this standard. In particular, this documents’
presentation of the following key words SHOULD NOT be directly referenced in other documents: reg-
ular expression, branch, piece, quantifier, atom, normal character, metacharacter, banned character,
escaped character, character class, positive character class, negative character class, character range,
wildcard.

Editorial note— The list of key words defined in this document that SHOULD NOT appear in
other documents is inelegant, but defining these terms is not a principle goal of this docu-
ment either. However, definitions of patterns that do not name (at leastmost of) these parts
are hard to follow.

3

The Pattern Datatype

2.2.1 Components that Match Strings

The following components define portions of patterns which match strings

2.2.1.1 Regular Expression

A regular expression consists of one or more branches. Between each branch is a single U+007C |
character.

regExp ::= branch ('|' branch)*

The set of strings matched by a regular expression is the union of the sets of strings matched by its
branches.

2.2.1.2 Branch

A branch consists of one or more pieces. The pieces of a branch appear adjacent to one another with
no intervening characters.

branch ::= piece piece*

A branch matches a string 𝑠 if and only if a prefix of 𝑠 matches the first piece of the branch and the
remainder of 𝑠 matches the remaining pieces.

Editorial note — While the above is definition of branch matching does not appear to be
ambiguous, is it formally incomplete as it does not define what it means for a string to
“match the remaining pieces”. The following is more rigorous, but also more verbose:

A sequence of𝑛 pieces (where𝑛 ≥ 2)matches a string 𝑠 if and only if 𝑠 can be
represented as a concatenation of 𝑛 strings 𝑠1 𝑠2 … 𝑠𝑛 such that 𝑠1 matches
the first piece in the sequence, 𝑠2 matches the second piece, and so on with 𝑠𝑛
matching the last piece.

A branch matches a string if either (a) the branch consists of only a single piece
and that piece matches the string, or (b) the branch consists of a sequence of
pieces and that sequence of pieces matches the string.

Feedback is invited on which version is preferable.

2.2.1.3 Piece

A piece consists of an atom, possibly followed by a quantifier.

piece ::= atom quantifier?
quantifier ::= [?*+] | ('{' quantity '}')`
quantity ::= quantRange | quantMin | QuantExact
quantRange ::= QuantExact ',' QuantExact
quantMin ::= QuantExact ','
QuantExact ::= 0 | [1-9] [0-9]*

4

The Pattern Datatype

The set of strings matched by a piece depends on the quantifier used. If S is an atom and L(S) is the set
of strings matched by S then

Piece Set of strings matched

S L(S)
S ? the empty string, and all strings in L(S)
S * all concatenations of zero or more strings in L(S)
S + all concatenations of one or more strings in L(S)
S {n,m} all concatenations of at least n and no more thanm strings in L(S)
S {n} all concatenations of exactly n strings in L(S)
S {n,} all concatenations of at least n strings in L(S)

When the above table refers to “strings in L(S)”, the strings do not need to be distinct.

Example— If L(S) is {“a”, “b”} then L(S *) includes an infinite number of strings, including
”“,”a“,”b“,”aa“,”ab“,”ba“,”bb“,”aaa”, etc.

Example— If L(S) is {“a”, “b”} then L(S {3}) contains 8 strings: {“aaa”, “aab”, “aba”, “abb”,
“baa”, “bab”, “bba”, “bbb”}.

Note— The above omits {,n}, which some regex dialects allow as a shorthand for {0,n}.

Note—The above omits the lazy quantifiers *?, +?, etc., which some dialects allow to select
between derivations of a particular string.

Note— The above prohibits {02,12} and other leading zeros in quantities.

2.2.1.4 Atom

An atom is either a normal character, an escaped character, a character class, or a parenthesised
regular expression.

atom ::= NormalChar | escapedChar | charClass | '(' regExp ')'

An atom that is a parenthesized regular expression matches the same set of strings as its regular ex-
pression (the parentheses do not directly contribute to thematch).

An atom that is a normal character or escaped charactermatches any single-character string contain-
ing the character represented by the normal character or escaped character.

An atom that is a character class matches any single-character string containing a character within
the character class.

5

The Pattern Datatype

2.2.2 Components that represent characters

The following components define portions of patterns which represent single characters

2.2.2.1 Normal Character

A normal character is any character that is not ametacharacter or a banned character.

Each normal character represents itself.

Themetacharacters are ‘.’, ‘\’, ‘?’, ‘*’, ‘+’, ‘{’, ‘}’, ‘(’, ‘)’, ‘|’, ‘[’, and ‘]’.

The banned characters are ‘^’, ‘$’, ‘&’, ‘/’, and the escapable control characters U+0009, U+000A, and
U+000D.

Note — The above REQUIRES that metacharacters do not appear as normal characters un-
escaped. Some dialects are more permissive, allowing e.g. } to appear unescaped, but that
MUST NOT be done in patterns.

Note — The banned characters have special meaning in some regular expression dialects,
and as such MUST NOT appear unescaped in any pattern.

Editorial note — The set of banned characters was selected by a survey of several regular
expression dialects, butmay be incomplete. Community input on other characters thatmay
have special meaning in some dialects is invited.

2.2.2.2 Escaped Character

An escaped character is a U+005C \ followed by a single character, which must be ametacharacter,
a class metacharacter, a banned character, or one of U+0074 t, U+006E n, or U+0072 r.

An escapedmetacharacter, class metacharacter, or banned character represents themetacharacter, a
class metacharacter, or banned character itself.

An escaped U+0074 \t represents the character U+0009 (the horizontal tab).

An escaped U+006E \n represents the character U+000A (the line fed).

An escaped U+0072 \r represents the character U+000D (the carriage return).

Note — Some dialects of regular expressions allow any character to be escaped without
special meaning, but others do not or have additional special meanings for some characters
(such as \f, \A, etc). For maximal compatibility, patternsMUST NOT escape characters other
than those listed above.

Note — Code-point escapes (e.g., \x{2F2E} for 巛) are not provided in this specification
because they are not supported in some common regular expression engines such as POSIX

6

The Pattern Datatype

and XML. Instead, Unicode should be expressed in the same encoding used by the strings
being checked for membership in a regular expression’s language.

If the chosen engine is byte- rather than code-point-oriented, care should be made that (a)
quantifiers bind to characters, not bytes; and (b) character class ranges are correctly han-
dled. Binding can be achieved by adding parentheses around each multi-byte character;
how to achieve character class ranges is not known in general by the authors of this speci-
fication.

2.2.2.3 Class Character

A class character is either an escaped character or a single character that is neither a class metachar-
acter nor a banned character.

The class metacharacters are ‘.’, ‘\’, ‘-’, ‘|’, ‘[’, and ‘]’.

Example — Because banned characters are not permitted unescaped as class characters,
“[A-^]” is not a pattern (as it includes the banned character ‘^’) even though it is accepted
by some regular expression engines.

Editorial note — class character might be clearer if we add a definition for class normal
character (like we do a normal character)

2.2.3 Components that define sets of characters

The following components define sets of individual characters.

2.2.3.1 Character Class

A character class is either a positive character class, a negative character class, or a wildcard.

charClass ::= posCharClass | negCharClass | wildcard

2.2.3.2 Positive Character Class

A positive character class is a set of one or more character ranges within brackets.

posCharClass ::= '[' charRange+ ']'

A positive character class defines the union of the sets defined by its character ranges.

Note — The ranges do not need to be mutually exclusive nor presented in any particular
order.

2.2.3.3 Character Range

A character range is either a single class character or two class characters separated by a U+002D -.

charRange ::= classChar | classChar '-' classChar

7

The Pattern Datatype

If a character range has two class characters the second MUST NOT have a numerically lesser code
point than the first.

A single-class character character range defines the singleton set containing only the character that
its class character represents. A two-character character range defines the set of all characters with
code points that are both

— numerically greater than or equal to the code point of the character that the first class character
represents, and

— numerically less than or equal to the code point of the character that the second class character
represents.

2.2.3.4 Negative Character Class

A negative character class is a set of one or more character ranges, preceded by U+005E ^, within
brackets.

negCharClass ::= '[^' charRange+ ']'

A negative character class defines the set of all characters that are not within the union of the sets
defined by its character ranges.

2.2.3.5 Wildcard

A wildcard is represented as U+002E ..

wildcard ::= '.'

The wildcard defines the set of all characters.

Note— The above definition includes new line characters in .. When using an engine that
does not do so, replace all . with something else, such as (.|[\r\n]), (.|\s), or [\s\S].
Which one works depends on the engine in question.

2.3 The types:Pattern datatype

FHISO uses the types:Pattern datatype to represent patterns. It MUST NOT be used for pattern-like
regular expression variants that do not conform to this standard’s definition of a pattern.

Example — In ECMAScript, “/^.[.]$/” is a regular expression that matches a two-
character string ending with a period. Because this is not a valid pattern, it does not have
the types:Pattern datatype.

The lexical space of this datatype is the space of all strings that match the regExp production in
§2.2.1.1.

8

The Pattern Datatype

Example— Thus the string “([A-Z][a-z]+)*” is within the lexical space of this datatype,
but “^\x{FFEF}.*$” is not, despite being a valid regular expression in some engines.

This is a structured non-language-tagged datatype which has the following properties:

Datatype definition

Name https://terms.fhiso.org/types/Pattern
Type http://www.w3.org/2000/01/rdf-schema#Datatype
Pattern .*
Supertype No non-trivial supertypes
Abstract false

9

The Pattern Datatype

3 Dialect Guide
Note— This entire section is non-normative.

Editorial note — This section is incomplete, and mostly added to as a sanity-check to see if
engines I use can handle these regexs. It should probably either be removed or completed.

Following are some suggestions for making regular expressions in the above dialect work with vari-
ous regular expression engines.

C++11 std::regex
Use the ECMAScript variety and regex_match (not regex_search). Replace non-escaped .
with (.|\s).

C++ boost::regex
Use the ECMAScript variety. How to ensure full match not known to the author of this docu-
ment.

ECMAScript
Surround expression with ^(…)$. Replace non-escaped . with (.|\s).

Java Surround expression with ^(?s…)$.

.NET Use the RegexOptions.Multiline option or replace non-escaped . with (.|\n). Surround
expression with ^(…)$.

Perl Use m/^(…)$/s.

PCRE
Use the PCRE_UTF8 option. Surround expression with ^(…)$.

PCRE2
Use the PCRE2_UTF and PCRE2_DOTALL options. Surround expression with ^(…)$.

PHP Surround expression with /^(…)$/us with the preg_… functions.

POSIX
Requires extensive modifications. Basic mode required escaping metacharacters. Things that
do not require escaping may forbid escaping and require pre-processing to strip \s.

Python
Use the re.DOTALL option. In Python 3.4 and later, use the fullmatch function; otherwise use
match and surround the expression with (…)$.

Ruby
Surround expression with /\A(…)\Z$/m.

XML Replace non-escaped . with [\s\S].

10

The Pattern Datatype

4 References

4.1 Normative references

[Basic Concepts]
FHISO (Family History Information Standards Organisation). Basic Concepts for Genealogical
Standards. First public draft. (See https://fhiso.org/TR/basic-concepts.)

[RFC 2119]
IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Re-
quirement Levels. Scott Bradner, eds., 1997. (See https://tools.ietf.org/html/rfc2119.)

[XML]
W3C (World Wide Web Consortium). Extensible Markup Language (XML) 1.1, 2nd edition. Tim
Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, and John Cowan eds.,
2006. W3C Recommendation. (See https://www.w3.org/TR/xml11/.)

Copyright © 2017–18, Family History Information Standards Organisation, Inc. The text of this stan-
dard is available under the Creative Commons Attribution 4.0 International License.

11

https://fhiso.org/TR/basic-concepts
https://tools.ietf.org/html/rfc2119
https://www.w3.org/TR/xml11/
https://fhiso.org/
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Conventions used

	Pattern
	Matching and Languages
	Hierarchical Definition of Patterns
	Components that Match Strings
	Components that represent characters
	Components that define sets of characters

	The types:Pattern datatype

	Dialect Guide
	References
	Normative references

