
Extended Legacy Format (ELF):
Date, Age and Time Microformats

8 October 2019

Editorial note — This is a first public draft of the microformats used for dates, ages and
times in FHISO’s proposed suite of Extended Legacy Format (ELF) standards. This document
is not endorsed by the FHISO membership, and may be updated, replaced or obsoleted by
other documents at any time.

Comments, discussion and other feedback on this draft should be directed to the tsc-
public@fhiso.org mailing list.

Latest public version: https://fhiso.org/TR/elf-dates
This version: https://fhiso.org/TR/elf-dates-20181230

FHISO’s Extended Legacy Format (or ELF) is a hierarchical serialisation format and genealogical
data model that is fully compatible with GEDCOM, but with the addition of a structured extensibility
mechanism. It also clarifies some ambiguities that were present in GEDCOM, and documents best
current practice.

The GEDCOM file format developed by The Church of Jesus Christ of Latter-day Saints is the de facto
standard for the exchange of genealogical data between applications and data providers. Its most re-
cent version is GEDCOM 5.5.1 which was produced in 1999, but despite many technological advances
since then, GEDCOM has remained unchanged.

Note — Strictly, [GEDCOM 5.5] was the last version to be publicly released back in 1996.
However a draft dated 2 October 1999 of a proposed [GEDCOM 5.5.1] was made public; it is
generally considered to have the status of a standard and has been widely implemented as
such.

FHISO are undertaking a program of work to produce a modernised yet backward-compatible refor-
mulation of GEDCOMunder the name ELF, the newname having been chosen to avoid confusionwith
any other updates or extensions to GEDCOM, or any future use of the name by The Church of Jesus
Christ of Latter-day Saints. This document is one of five that form the initial suite of ELF standards,
known collectively as ELF 1.0.0:

— ELF: Primer. This is not a formal standard, but is being released alongside the ELF standards
to provide a broad overview of ELF written in a less formal style. It gives particular emphasis
to how ELF differs from GEDCOM.

— ELF: Serialisation Format. This standard defines a general-purpose serialisation format
based on the GEDCOM data format which encodes a dataset as a hierarchical series of lines,
and provides low-level facilities such as escaping.

http://tech.fhiso.org/tsc-public
http://tech.fhiso.org/tsc-public

Extended Legacy Format (ELF): Date, Age and Time Microformats

— ELF: Schemas. This standard defines flexible extensibility and validation mechanisms on top
of the serialisation layer. Although it is an OPTIONAL component of ELF 1.0.0, future ELF exten-
sions to ELF will be defined using ELF schemas.

— ELF: Date, Age and Time Microformats. This standard defines microformats for represent-
ing dates, ages and times in arbitrary calendars, together with how they are applied to the
Gregorian, Julian, French Republican and Hebrew calendars.

— ELF: Data Model. This standard defines a data model based on the lineage-linked GEDCOM
form, reformulated to be usablewith the ELF serialisationmodel and schemas. It is not amajor
update to the GEDCOM data model, but rather a basis for future extension and revision.

Editorial note— At the time this draft was published, none of the other documents are yet
at the stage of having a first public draft available, however FHISO’s Technical Standing
Committee (TSC) are working on them and hope to have first drafts available soon.

An explanation of the conventions used in this standard can be found in §1, and the general con-
cepts associated with time, calendars and uncertainty are defined in §2. A generic syntax for express-
ing dates in arbitrary calendars is given in §3.1, which §3.2 extends to support imprecisely known
dates and dates written in natural language, and §3.4 extends to support date periods representing
extended states of being. Four specific calendars are defined in §4, allowing the Gregorian, Julian,
French Republican and Hebrew calendars to be used in the generic date syntax.

This standard defines five datatypes so that the formats defined here can be used in ELF. The
elf:DateValue datatype defined in §3.3 is ELF’s standard datatype for representing historical
dates, while the elf:DatePeriod datatype defined in §3.4 is used to represent date periods, such
as the period of coverage of a source. The elf:DateExact datatype defined in §4.1.1 is a more
restricted format for expressing exact dates in the Gregorian calendar, and is used to record when
ELF objects were created or last modified, typically in conjunction with the elf:Time format
defined in §5. The elf:Age datatype defined in §6 is used to represent individuals’ ages. These
datatypes contain only modest changes from GEDCOM, but should serve as a basis for future work
on calendars.

1 Conventions used

Where this standard gives a specific technical meaning to a word or phrase, that word or phrase is
formatted in bold text in its initial definition, and in italicswhenused elsewhere. The keywordsMUST,
MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED,
MAY and OPTIONAL in this standard are to be interpreted as described in [RFC 2119].

An application is conformant with this standard if and only if it obeys all the requirements and
prohibitions contained in this document, as indicated by use of the words MUST, MUST NOT, REQUIRED,
SHALL and SHALL NOT, and the relevant parts of its normative references. Standards referencing this
standardMUST NOT loosen any of the requirements and prohibitionsmade by this standard, nor place
additional requirements or prohibitions on the constructs defined herein.

2

https://tools.ietf.org/html/rfc2119

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note— Derived standards are not allowed to add or remove requirements or prohibitions
on the facilities definedherein so as to preserve interoperability between applications. Data
generated by one conformant applicationmust always be acceptable to another conformant
application, regardless of what additional standards each may conform to.

If a conformant application encounters data that does not conform to this standard, it MAY issue a
warning or error message, and MAY terminate processing of the document or data fragment.

This standard depends on FHISO’s Basic Concepts for Genealogical Standards standard. To be con-
formant with this standard, an application MUST also be conformant with [Basic Concepts]. Concepts
defined in that standard are used here without further definition.

Note— In particular, precise meaning of character, string, whitespace, whitespace normal-
isation, language tag, term, prefix notation, prefix, property, datatype and subtype are given
in [Basic Concepts].

Indented text in grey or coloured boxes does not form a normative part of this standard, and is la-
belled as either an example or a note.

Editorial note—Editorial notes, such as this, are used to record outstanding issues, or points
where there is not yet consensus; they will be resolved and removed for the final standard.
Examples and notes will be retained in the standard.

The grammar given here uses the form of EBNF notation defined in §6 of [XML], except that no sig-
nificance is attached to the capitalisation of grammar symbols. Conforming applications MUST NOT

generate data not conforming to the syntax given here, but non-conforming syntax MAY be accepted
and processed by a conforming application in an implementation-defined manner.

Note— In this form of EBNF,whitespace is only permitted where it is explicitly stated in the
grammar. It is not automatically permitted between arbitrary tokens in the grammar.

The grammar productions in this standard uses the S production defined in §2 of [Basic Concepts] to
match any non-empty sequence of whitespace characters.

This standard defines five datatypes to represent time-related concepts in ELF, each of which is iden-
tified by a term name, which is simply an IRI. The concept of a datatype, as used by FHISO, is defined
in §6 of [Basic Concepts], and the definition of each datatype in this standard includes a table listing
its formal properties.

Note—These properties include a formal statement that the datatype is datatype, define the
pattern and non-trivial supertypes of the datatype, and saywhether it is an abstract datatype.
These concepts are defined in §6.1, §6.2 and §6.3 of [Basic Concepts]. The pattern is a reg-
ular expression written in FHISO’s types:Pattern datatype defined in [FHISO Patterns].
This information forms part of an abstraction which allows applications to use a discovery
mechanism to find out about unknown components, thus allowing them to be processed in

3

https://www.w3.org/TR/xml11/

Extended Legacy Format (ELF): Date, Age and Time Microformats

more sophisticated ways than could be done with a truly unknown component. To support
this, FHISO’s web server has been configured to provide [Triples Discovery] on all terms
defined in this standard. Such functionality is outside the scope of this standard, and is
entirely OPTIONAL in ELF. Most readers can safely ignore this formalism and the tables of
properties given for each datatype.

This standard uses the prefix notation, as defined in §4.3 of [Basic Concepts], when discussing specific
terms. The following prefix bindings are assumed in this standard:

elf https://terms.fhiso.org/elf/
xsd http://www.w3.org/2001/XMLSchema#
types https://terms.fhiso.org/types/

Note—The particular prefixes assigned above have no relevance outside this standard doc-
ument as prefix notation is not used in the formal data model as defined by this standard.
This notation is simply a notational convenience which makes the standard easier to read.

2 General concepts
Editorial note — It is anticipated that this section will be moved to [Basic Concepts] in a
future draft of these documents.

2.1 Time

An instant is defined as an infinitesimally brief point in time.

Note — Although defined as an infinitesimally brief point in time, it may be subject to the
various forms of uncertainty described in §2.3.

Example—King Alfred’s birth occurred at some particular instant in themiddle of the ninth
century. Even though the year is not known with any great certainty, it is still an instant.

A time interval is defined as the section of time spanning between two specific instants.

Example— The interval lasting from midday on 1 Feb 2018 until midday on 14 Feb 2018 is
a time interval.

Example — The lifetime of a particular individual is another example of a time interval,
beginning at the instant of their birth and ending with the instant of their death.

A duration is the length of time elapsing between two instants, but without reference to any specific
choice of start and end instants.

4

Extended Legacy Format (ELF): Date, Age and Time Microformats

Example— “3 days”, and “34 years, 2 months” are two examples of durations expressed in
natural language.

Note—Durations differ from time intervals in that time intervals are durationswith specific
start and end instants. A time inteval has a duration associatedwith it, quantifying how long
it lasts.

Note—ELFdoes not provide a general-purpose duration datatype, but theelf:Age datatype
defined in §6 is a datatype customised for representing the duration of an individual’s life.

Fundamental to ELF’s handling of dates is a set of time intervals called calendar days, each of which
spans from one midnight until the next.

Note— A calendar day lasts for 24 hours, except when leap seconds is inserted or deleted,
or when the local time zone changes, as in the transition to or from daylight saving time.
In practical terms, it is a period during which the sun rises and sets exactly once, except in
the polar regions.

Note — Because midnight does not occur simultaneously around the world, the set of cal-
endar days in one region may be offset compared to those in another region. The details
vary depending on local legislation and custom. Currently, there can be three different cal-
endar days happening simultaneously in various parts of the world: when a calendar day
is just beginning in the Line Islands of Kiribati, it is still the previous calendar day in most
of world’s landmasses, and the calendar day before that in American Samoa. This means it
is possible for a person to participate in an event on one calendar day, travel to another re-
gion, and subsequently participate in an event on the previous calendar day. If the second
event is the person’s death, this could theoretically result in a living person participating in
an event the calendar day after their death.

Editorial note—Does this definition need loosening? Not all cultures consider the day to be
begin atmidnight. TheHebrew calendar defined in §4.4, for example, is normally usedwith
calendar days beginning at sunset, which is defined as 6pmusing variable length hours. The
Islamic and Bahá’í calendars do similarly. The definition of a calendar day is currently taken
from [ISO 8691], but should it be loosened to allow such definitions?

A date is a way of identifying a particular calendar day.

Note — ELF dates do not include an indication of either the time zone or the locale which
leaves some ambiguity into the exact points in time that are meant. The [ISO 8601] concept
of a date has the same ambiguity.

5

Extended Legacy Format (ELF): Date, Age and Time Microformats

Editorial note—This standard deliberately does not specify whether the calendar day 1 Jan-
uary 2018 in Vancouver is the same calendar day as 1 January 2018 in Paris, which started
nine hours earlier than the calendar day in Vancouver. This is left unspecified because [ISO
8601] is similarly vague. However if they are regarded as distinct calendar days, they are
represented by the same date in ELF.

Note — The definitions of an instant, a time interval, a duration, a calendar day and a date
given here are intended to be fully compatible with the definitions of these concepts in
[ISO 8601]. Any incompatibility between the definitions here and those in [ISO 8601] is
unintentional.

Editorial note—These concepts have been defined here rather than by normative reference
to [ISO 8601] because of the cost involved in obtaining a legal copy of [ISO 8601], and the
likelihood that implementers will not do so.

A time of day is a way of identifying an instant within a calendar day, done by dividing an ordinary
calendar day into 24 hours, each of which is subdivded into 60 minutes, each of which is further
divided into 60 seconds. In ELF, a time of day is represented by the elf:Time datatype defined in §5.

Note—A calendar daysmay exceptionally be divided differently if a leap second is inserted
or deleted, or when the local time zone changes.

2.2 Calendars

Many different systems for reckoning dates have been used throughout history and in different parts
of the world. Such systems are called calendars, and ELF allows historical dates to be specified using
many different calendars.

Example — The simplest form of calendar is to count the number of calendar days which
have elapsed since a particular day zero. The most popular such calendar is called the
Julian Day (which is unconnected to the similar-sounding Julian Calendar). Its day zero is
24 November 4714 BC in the proleptic Gregorian Calendar, a day chosen to be before all
recorded history. Written as a Julian Day, 1 January 2000 can be represented by the integer
2451545. Such calendars are not commonly used for writing historical dates as they are
cumbersome and error-prone.

Editorial note — Nevertheless, FHISO might consider standardising the Julian day as a
lightweight calendar for use as a common intermediate calendar during the conversion of
dates from one calendar to another.

Many calendars make use of units of time which are longer than a calendar day, and the general
framework for dates in ELF allows for two such units of time, a calendar month and a calendar
year, whose definitions will be dependent on the particular calendar.

6

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note — It is intended that a calendar year will typically be unit of time roughly equal to
the time it takes the Earth to orbit the Sun, and a calendar month will be a unit of time
intermediate in duration between a calendar day and a calendar year, and often loosely
based on the time it takes theMoon to orbit the Earth. However these are not requirements,
nor is it a requirement that all calendar years or all calendar months be of approximately
equal length in a given calendar.

Editorial note — The flexibility to define calendar years and calendar months arbitrarily
might be exploited in the future. FHISO are considering whether there is merit to defining
a calendar for the Julian day. If defined it would not be for general use expressing histori-
cal dates, but rather to provide a way of expressing epochs in a calendar-neutral way when
defining calendars. Because there is no applicable notion of a calendar month or calendar
year with Julian days, and because the generic date syntax defined in §3.1 is most natural
with calendars that have a calendar year, it is quite likely this calendar might define a cal-
endar year and a calendar month to be identical to a calendar day. This standard does not
prohibit this.

An incomplete date is a way of identifying a particular calendar month or calendar year without
identifying a specific calendar day.

Example — In the Gregorian calendar, “June 1953” is an incomplete date as it identifies a
particular calendar month, but not a specific calendar day within that month.

Note— Under this definition, an incomplete date is a date when it is being used to identify
a particular calendar day, but with limited precision.

An epoch is an instant which serves as a reference point for a given calendar from which calendar
years are numbered consecutively with an integer called the logical year, which either increases
or decreases with time. When the logical year number increases with time, the epoch SHALL be first
instant of the calendar yearwith the logical year number 1. When thee logical year number decreases
with time, the epoch SHALL be the last instant of the calendar year with logical year number 1.

Example— The epoch used in many forms of the Islamic Calendar is an instant during the
Gregorian year AD 622, the year of the HijrahwhenMuhammadmoved fromMecca toMed-
ina. The first calendar year of the Islamic calendar, called AnnoHegiræ 1 began at this epoch
and has the logical year number 1. Subsequent Islamic calendar years have been numbered
sequentially, AH 2, AH 3, etc., and have logical year numbers 2, 3, etc. The calendar year
immediately before the epoch is commonly labelled 1 BH (standing for Before the Hijrah),
and earlier calendar years are numbered backwards from the epoch. These have logical
year numbers 1, 2, 3, etc. too.

7

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note— This definition does not limit a calendar to having a single epoch.

A logical year number is not sufficient to identify a specific calendar year: it is also necessary to state
the particular epoch from which calendar years are numbered, and whether logical year numbers
increase or decrease with time. An epoch name is an identifier which represents these two things.
An epoch name where logical year numbers increase with time is called a forwards epoch name,
while an epoch namewhere logical year numbers decreasewith time is called a reverse epoch name.

Example— The Gregorian calendar has two distinct epoch names, “AD”, standing for Anno
Domini, which is a forwards epoch name, and “BC”, standing for Before Christ, which is a
reverse epoch name. Both use the same epoch, defined asmidnight at start of 1 January AD 1.

The way years were counted in the past does not always fully coincide with the modern reckoning
of years in that calendar, which is what defines the logical year, even though they are nominally
reckoned from the same epoch. The year number according to the historical reckoning is called the
historical year.

Example— Prior to the adoption of the Gregorian calendar in many parts of the world, the
year was considered to begin on the Feast of the Assumption (otherwise called Lady Day)
which falls on 25 March. This was the case in England before 1752. Sources contemporary
to the event record the execution Charles I as happening on 30 January 1648. This was in
themonth following December 1648 andwould now be considered to be in 1649, as a result
of whichmodern accounts usually describe it as happening on 30 January 1649. (This is not
a result a change of the Julian calendar to the Gregorian one: in the Gregorian calendar this
date is 9 February 1649.) In this example, 1649 is the logical year, while 1648 is the historical
year.

Example — The Byzantine calendar counted years since the supposed beginning of the
worldwith an epoch on 1 September 5509 BC, however in early times some alternative dates
were assigned to this epoch, including 25 March 5493 BC, sometimes known as the “Alexan-
drian” epoch. A definition of this calendar which used the traditional Byzantine epoch in
5509 BC would have logical years counted from then, but might also allow historical years
to be counted from the Alexandrian epoch. This is an example where the logical year and
historical year differ by more than one.

A calendar defines how the number of calendar days in each calendar month and the number of cal-
endar months in each calendar year are determined. Stylistic and linguistic variations in the presen-
tation of a date do not constitute separate calendars.

Example — “31st August, 2018”, “31 авг. 2018”, “8/31/2018” and “2018年8月31日” are vari-
ous ways in which the date which is represented in [ISO 8601] as “2018-08-31” might be
presented. The differences between these presentations are merely stylistic or linguistic
ones, and therefore these difference are not separate calendars: they are all written using
the Gregorian calendar.

8

Extended Legacy Format (ELF): Date, Age and Time Microformats

Editorial note— In due course, FHISOwill need to clarify and perhaps revise this definition
of what constitutes a distinct calendar. Does Roman day reckoning (e.g. “Prid. Kal. Sept”
for 31 Aug) count as a separate calendar or is just a stylistic variation? What about regnal
years (e.g. “31 Aug 67 Eliz II”)? These are not strictly separate calendars, but it could be
convenient to consider them as such in ELF if it is considered desirable for ELF to preserve
the fact that the dates were recorded in these forms.

2.3 Uncertainty

The precision of a stated value, such as a date, is a measure of the specificity with which the value
has been specified: the more specifically, the greater the precision. Values with relatively high or low
precisionmay be described as relatively precise or imprecise, respectively.

Example—It ismore precise to say that the Battle of Agincourt was on St Crispin’s Day, 1415,
than it is to say that the battle occured during Henry V’s reign. Both statements are true,
but the former has greater precision because it identifies the specific day of the battle, while
the latter identifies it only as falling within that nine-year reign.

Saying the battlewas in the autumn of 1415 has an intermediate level of precision. This year
might described as precise in comparision to the whole of Henry V’s reign, or as imprecise
when compared to the specific day.

Note—Values are stated imprecisely formany reasons, includingwhen amore precise value
is not known and when greater precision is considered irrelevant. Another reason is when
the value being stated is inherently ambiguous.

When the value being stated is the instant at which some entity changed state, it is common for this
instant not to be defined with arbitrary precision because there is a time interval during the transi-
tion when it is not well-defined what the state is. The duration of this time interval is known as the
inherent ambiguity of the instant of the change.

Example — Depending on the jurisdiction, the precise instant during a wedding when the
couple becomemarriedmaybe ill-defined as there are several obvious possibilities. It could
be argued to occur when the couple complete their vows, or when the priest declares the
couple husband and wife; or it might be when the last signature is put on marriage cer-
tificate has been completed, or when the ceremony ends. If there is no single accepted
definition, then there is likely several minutes of inherent ambiguity between the first and
the last possibilities. Thiswould be true even if thewedding had been videoed and carefully
timed, as it is not due to lack of information on what happened and when.

A stated value is either exactly stated or approximately stated. An exactly stated value is onewhere
it is well-defined exactly what values are considered to be consistent with the stated value.

9

Extended Legacy Format (ELF): Date, Age and Time Microformats

Example — The date of the Battle of Agincourt was stated in three different ways in the
earlier example. In order of decreasing precision these were “St Crispin’s Day, 1415”, “the
autumn of 1415”, and “during Henry V’s reign”. The meaning of St Cripin’s Day is well-
defined: it is 25 October. Had the Battle of Agincourt in fact occurred on 24 October 1415,
this would not be consistent with the statement that it happened on St Crispin’s Day. “St
Crispin’s Day, 1415” is therefore an exactly stated value. “During Henry V’s reign” is simi-
larly exactly stated.

“The autumn of 1415” is very likely not well-defined. Some people define it as stretching
from the autumnal equinox in late September to the winter solstice in late December, but
this definition is by no means universal. Often it is used a more vague manner to refer to
the later part of the year in the northern hemisphere. Unless context makes it clear that a
specific, well-definedmeaning of word “autumn” was intended, this is not an exactly stated
value: it is therefore an approximately stated value.

The battle might also be described as happening in about 1415. This statement is true as
the battle did in fact occur in 1415, but it is an approximately stated value. Had the battle
actually been in 1414, would this be consistentwith the description “about 1415”? Probably.
But what about 1411? Or 1401? There is no general answer, and as a result “about 1415” is
an approximately stated value.

Example — These concepts do not only apply to quantitative values. It is more precise to
say that a person was born in the commune of Coutances, than to say say that person was
born in metropolitan France. “The commune of Coutances” and “metropolitan France” are
both exactly stated values. The person might also be described as born in northern France,
which would normally be interpreted as an approximately stated value.

The precision range of an exactly stated value is defined as the set of values which would be con-
sidered consistent with the stated value. One specific measure of precision is the precision range
width, which is defined as the difference between the two most widely separated values in the preci-
sion range. When the value being specified is an instant, its precision range is a time interval, and its
precision range width is a duration.

Example— If a person is said to have died in 1967, this is consistent with the instant of their
death being at any time between midnight at the start of 1 January 1967 and midnight at
the end of 31 December 1967. The time interval between these two instants is the precision
range and is a calendar year. In this example, the stated value is 1967 and its precison range
is the duration 1 year.

10

Extended Legacy Format (ELF): Date, Age and Time Microformats

Example— If a person is said to have married in the 1910s, it is fairly clear this refers to a
decade and therefore the precision range is 10 years. However if the person is said to have
married in the 1900s, this might mean the decade or the century. Without further context,
the intended precision range is unclear.

The accuracy of a value is a measure of how close a stated value is to the true value. A exactly stated
value is said to accurate if the true value lies within the precision range of the stated value, and
inaccurate otherwise. For an approximately stated value, the accuracy is relative: the further the
stated value is from the true value, the less accurate or more inaccurate the stated value.

Note — The precision of a value is unrelated to its accuracy. A value may be precise or
imprecise independently of whether it is accurate or inaccurate.

Example — The following table gives example instants of birth for Queen Victoria which
are variously precise or imprecise, and accurate or inaccurate.

Precise Accurate 24 May 1819 at 4am
Precise Inaccurate 19 Jun 1833 at 9pm
Imprecise Accurate During the 1810s
Imprecise Inaccurate During the 1790s

It is generally accepted that Queen Victoria was in fact born at 4.15am on 24 May 1819.

Note — In principle, the accuracy of any stated value is unknowable, though in practice
some facts are so well established they can be regarded as proven for all practical purposes
as the alternative would require there to have been a vast conspiracy. Much of the time the
situation is not so clear.

The likelihood that a stated value is accurate is referred to as its reliability.

Note— Although this is in theory a probability, reliabilities are usually described compara-
tively or quantitatively. A researchermay gauge the reliability of a stated value by consider-
ing the reliability of the sources in which it is stated, and the corroborating or contradicting
evidence. Different researchers might reasonably reach different conclusions on the relia-
bility of a stated value.

Note—A stated value can be considered unreliable by virtue of being stated with excessive
precision.

Example— Suppose a man was last seen on 1 January and his corpse found on 31 January.
The coroner determined the man had been dead for one to two weeks when found, but
that no more precise date of death could be established. A newspaper obituary simply said

11

Extended Legacy Format (ELF): Date, Age and Time Microformats

he died in January, but a gravestone was erected giving his date of death as 21 January.
A researcher might conclude the bare month given in the obituary is reliable because the
relatively imprecise date is very likely accurate as it is consistent with the other evidence.
The gravestone might be accurate, and it is not directly contradicted by the other evidence,
but if the researcher believes the date “21 January”wasmade up, perhaps so that something
could be put on the grave, it might be judged unreliable as there is a high likelihood that the
true instant of death was not actually on 21 January.

This is not an example of inherent ambiguity. Depending on the circumstances of the death,
there may have been a few minutes of inherent ambiguity as the man’s life slowly ebbed
away, but the bulk of the uncertainty is from lack of knowledge of what happened and
when.

2.4 Date concepts in other formats
Editorial note— This whole section may vanish in a future draft.

The datatypes defined in this standard are NOT RECOMMENDED for use in serialisation formats other
than with ELF.

Editorial note— In due course we need to decide FHISO’s preferred way of handling dates
and durations in other serialisation formats. GEDCOM X, for example, uses a format more
closely aligned with [ISO 8601], and in early discussion on dates and in our call for paper
submissions, we were erring in that direction too.

If we have one date format for ELF, another for GEDCOMX, and possibly even a third one for
a future format of our own, we will probably want to make sure we don’t end upwith dates
formatted for GEDCOMX appearing in ELF, or vice versa, otherwise an ELF application will
need to know about every date format rather than just the ELF date formats. At some level,
this requires converting dates between formats when data is transferred between systems.
For data in the [ELF Data Model] or in the GEDCOM X data model, this is no problem as a
data conversion stage will be required when converting between data models, and it can
convert the date formats too.

A problem arises in FHISO’s component standards, such as [CEV Concepts], which are in-
tended to be usable in ELF, GEDCOM X and other data models. An ELF application will not
necessarily know about CEV and will then see the CEV structures as unknown extensions,
so there needs to some way of indicating that the ELF structure it is reading contains a
date. This could be done by requiring an ELF schema to be present and have it specify the
datatype for the payload, though that might be too onerous a requirement. Another option
is to require a specific tag like DATE to be used, and special case this. The same issuemay ex-
ist for ages too, but it is not general to all datatypes— just those which have to be formatted
differently in different serialisations, which will hopefully be a minority of datatypes.

12

Extended Legacy Format (ELF): Date, Age and Time Microformats

3 Date formats

ELF uses three different datatypes to represent dates, depending on the context.

— elf:DateValue is used for historical dates, and is defined in §3.3.
— elf:DatePeriod is used to record the period of coverage a source, and is defined in §3.4.
— elf:DateExact is used to record the creation or modification date of various objects in the

data model, and is defined in §4.1.1.

As the first two of these datatypes are used to record historical dates, and ELF allows historical dates
to be expressed using many different calendars, these two datatypes each allow dates in arbitrary
calendars. This is achieved by providing a generic date syntaxwhich all datesMUSTmatch, regardless
of calendar, and which begins with a calendar escape indicating the specific calendar in use. This
generic syntax is defined in §3.1, and extensions to it to support imprecisely known dates and dates
written in natural language are given in §3.2.

Editorial note — An earlier draft of this standard used a separate datatype for each calen-
dar, and [ELF Serialisation] used @#D…@ as away of tagging the datatype. This approachwas
eventually abandoned because it could not cope with date ranges and date periods where
the two end points used different calendars. [GEDCOM 5.5.1] permits this, and although
many applications do not support it, the TSC considered the following use case to be impor-
tant enough that ELF needed to support it too:

0 INDI
1 NAME George II
1 TITL King of Great Britain
2 DATE FROM @#DJULIAN@ 11 JUN 1727 TO @#DGREGORIAN@ 25 OCT 1760

Were there datatype per calendar, what should the datatype of the above DATE element’s
payload be? It’s neither wholly Julian nor wholly Gregorian. Because of the difficulties
with such constructs, we dropped the idea of making each calendar a separate datatype.

One option for solving this which the TSC seriously considered is to introduce compound
calendars, along the lines of the proposal in CFPS 38, but this adds complexity due to the
need to add a mechanism for defining compound calendars.

A separate complication comes from the fact that elf:DateValue and elf:DatePeriod
are separate datatypes, and calendar-specific subtypes of each would likely be required.
This could be solved by removing periods from the data model entirely, perhaps by having
the serialisation layer split up DATE tags containing a period. This may make sense at a
date model level too, if we model periods as two implicit events: one intiating and one
concluding the periodbeingdiscussed. There is less of a case for doing the samewtih ranges,
so a solution to the problem of ranges with multiple calendars would still be required.

The TSC believe an approach along these lines could bemade towork, but itwould be too big
a change to include in ELF 1.0. We also feel we should investigate alternative approaches

13

https://tech.fhiso.org/cfps/files/cfps38.pdf

Extended Legacy Format (ELF): Date, Age and Time Microformats

before committing to a specific solution. Deferring this functionality until a future version
of ELF will give us time to do give suitable consideration to the options available.

3.1 Generic date syntax

A date is represented in the generic date syntax as a sequence of five components: a calendar escape,
followed by encodings of the calendar day, calendar month, calendar year and epoch name. Only the
calendar year is REQUIRED; the other components are OPTIONAL, except that the calendar day cannot
be present if the calendar month has been omitted. It matches the Date production.

Date ::= (CalEsc S)? ((Day S)? Month S)? Year (S? Epoch)?

CalEsc ::= "@#D" [A-Z] [A-Z]* "@"
Day ::= [0-9]+
Month ::= [A-Z] [A-Z0-9] [A-Z0-9]+
Year ::= "-"? [0-9]+ ("/" "-"? [0-9]+)?
Epoch ::= [A-Z] ([A-Z] | [A-Z0-9._]* [._] [A-Z0-9._]*)

| "$" [^ #x9#xA#xD]+

Example— The following are examples of dates which match the Date production:

63 B.C.
21 JAN 1793
@#DJULIAN@ 29 MAY 1453

The first of these includes only a calendar year and epoch name. The following two both
have a calendar day, calendarmonth and calendar year, andneither specifies an epoch name.
Only the third date includes a calendar escape.

Note—The Month and Epoch productions aremore complex thanmight at first seemneces-
sary to ensure that no string can match both productions. This ensures a string containing
just a day and a month, such as “1 JAN”, cannot match the Date production. A future ver-
sion of ELF might allow the year to be omitted in dates where it is unknown.

A conformant application serialising a date using this syntax SHOULD use a single space character
(U+0020) wherever whitespace is permitted in the Date production.

Note— [GEDCOM 5.5.1] under-specifies how whitespace is allowed in dates. The Date pro-
duction is somewhat permissive in its treatment of whitespace, though does not allow it to
be omitted entirely. The preceding recommendation ensures that conformant ELF applica-
tions will be maximally compliant with current GEDCOM application which typically use a
single space character.

14

Extended Legacy Format (ELF): Date, Age and Time Microformats

3.1.1 Calendar escapes

The CaleEsc production encodes the calendar escape, which identifies the particular calendar being
used in the date.

Note — Syntactically, the calendar escape is an ELF escape, as defined §XX of [ELF Seriali-
sation]. When such escapes occur in the payload of a DATE line, they are passed through to
the data model unaltered.

Editorial note—Check the above is accurate once [ELF Serialisation] has been updated, and
update the reference. Note that this means historical dates MUST appear on DATE lines.

The following calendar escapes are defined in §4 of this standard.

@#DGREGORIAN@ The Gregorian calendar defined in §4.1
@#DJULIAN@ The Julian calendar defined in §4.2
@#DFRENCH R@ The French Republican calendar defined in §4.3
@#DHEBREW@ The Hebrew calendar defined in §4.4

Note—The calendar escape for the French Republican calendar contains exactly one space
character (U+0020). It MUST NOT be written with any alternative form of whitespace.

Editorial note—An earlier draft of this standard included @#FRENCHR@ (without a space) as
an alias for @#DFRENCH R@, but we made no record of the use case that lead to its inclusion
and have removed it again.

Note—[GEDCOM5.5.1] includes one further calendar escape, @#DROMAN@, which it reserved
for future use, presumably for use with Roman Republican calendar. This standard does
not reserve this calendar escape.

Editorial note— Should we standardise a basic Roman calendar using the calendar escape
@#DROMAN@? The lengths of the months would be left unspecified, for the simple reason
that they are not always known, though we might safely limit the calendar day to being a
two digit number. It would probably use the twelve month names of the Gregorian calen-
dar, including JUL and AUG, despite them being called Quintilis and Sextilis at the time. We
would need amonth name for Intercalaris, the intercalarymonth inserted in or after Febru-
ary. As INT risks conflicting with the date modifier for interpreted dates, MERmight be best
as Intercalaris was also called Mercedonius. We would also need month names for Inter-
calaris Prior and Intercalaris Posterior, the two exceptional inserted in 46 BC to realign the
calendar with the equinoxes in preparation for the introduction of the Julian calendar. IC1
and IC2would work. The A.D. and B.C. epoch nameswould be supported. A.U.C. (for ab
urbe condita – since the founding of Rome) would need careful consideration.

15

Extended Legacy Format (ELF): Date, Age and Time Microformats

The need for this calendar arises surprisingly often. Pompey, the famous Roman general,
was born on 29 September 106 BC, as reckoned in the Roman calendar, but this date cannot
be converted into the proleptic Julian or Gregorian calendar with certainty because the
precise lengths of the years around this time are not known. A comprehensive discussion
of this can be found in [Roman Dates]. Even though no genealogies back to Roman times
can currently be proved, they are commonly encountered, and the fact that a genealogy
cannot be proved does not necessarily mean it is not useful to record it, perhaps for the
purpose of critical review.

The @#DUNKNOWN@ calendar escape is permanently reserved. Third parties MUST NOT define calen-
dars with this name and applications SHOULD NOT generate dates using this calendar escape, however
conformant applications MUST NOT discard dates using this calendar escape. Conformant applications
MUST NOT assume that two dates with a @#DUNKNOWN@ calendar escape, whether explicitly written or
inferred as described below, are expressed in the same calendar.

Example — The generic date syntax puts sufficient constraints on how calendars can
be represented that applications MAY make certain assumption about dates written in
unknown calendars, for example that @#DISLAMIC@ 1 RAJ 1420 is an earlier date than
@#DISLAMIC@ 9 RAM 1422 if both are well-formed dates. This is because year numbers
MUST increase with time. Conformant applications MUST NOT make similar assumptions for
two dates with the @#DUNKNOWN@ calendar escape as they might not be represented using
the same calendar.

Note — It is the intention of FHISO to allow third parties to define their own calendar es-
capes in order to support additional calendars. However this version of ELF provides no
means of avoiding conflict between separate third-party calendar escapes. This is partic-
ularly problematic when there a several variants of a calendar, and if different vendors
choose to implement a different variant using the same calendar escape. FHISO intend to
introduce a mechanism to avoid such conflicts in a future version of ELF. This is likely to
work by assigning a term to each calendar, and a syntax for binding calendar escapes to
term name IRIs.

Editorial note — This functionality was dropped from ELF 1.0 because the specification
proved more complicated than expected. The intention is to add calendar bindings to the
ELF schema, such as this:

1 SCHMA
2 PRFX elf https://terms.fhiso.org/elf/
2 IRI elf:JulianCalendar
3 DTYPE JULIAN

Because dates are likely to copied around, once in the datamodel the dateneeds to reference
the calendar term name rather than the calendar escape. This means the serialisation layer

16

Extended Legacy Format (ELF): Date, Age and Time Microformats

needs to convert calendar escapes to term names, and vice versa. Finding a clean way of
doing this proved problematic.

The TSC had been considering making calendars a specific sort of datatype, and then have
the serialisation layer treat the calendar escape as way of tagging the datatype of the DATE
tag’s payload. However, as noted in an earlier editorial note, this caused problemswith date
periods and date ranges which used multiple calendars, and has been deferred to a future
version of ELF.

This generic date syntax defines only some basic syntactic constraints on the representation of the
calendar day, calendar month, calendar year and epoch name components. The party defining each
calendar SHOULD define further constraints on these components to define what constitutes a well-
formed date in that calendar. Where possible, the set ofwell-formed dates SHOULD be the same as the
set of dates that actually existed.

Example—The date “12 AUGUST 2000” is not awell-formed date in the Gregorian calendar,
as defined in §4.1, because the specified month, “AUGUST”, is not one of the twelve allowed
months names: it ought to have been written “12 AUG 2000”.

Example — The date “29 FEB 1973” is not a well-formed date in the Gregorian calendar,
because February 1973 only had 28 days.

Note—This standard does not prohibit calendars fromdefining dateswhich never occurred
to be well-formed, though this is generally not recommended. It is allowed to accommodate
calendars where the exact sequence of dates is either unknown or cannot be determined
algorithmically.

Example—Certain versions of the Islamic calendar define the start of each calendar month
bywhen the newmoon is actually observed. This results in unpredictablemonth lengths. If
such a calendarwere defined for use in ELF, it would likely regard days beyond the expected
end of themonth aswell-formed dates to accommodate the possibility that badweather had
prevented the new moon from being observed.

All dates written using a calendar escape with which the application is not familiar are assumed to
be well-formed. This includes all dates using the @#DUNKNOWN@ calendar escape.

Conformant applications MUST NOT generate dates which are known not to be well-formed. Applica-
tions encountering dates which are known not to be well-formed MAY delete the date or signal an
error to the user. If an application cannot determine whether or not a date is well-formed, it MUST

assume it is well-formed.

Note — Other than for dates written in the Gregorian calendar, no part of this standard
requires an application to be able to determine whether a date is well-formed. In some
calendars, such as the Hebrew calendar defined in §4.4, the rules for determining this are

17

Extended Legacy Format (ELF): Date, Age and Time Microformats

fairly complex. Applications are encouraged to implement these rules in full, but are not
required to.

The calendar escape is OPTIONAL in the generic date syntax. If the calendar escape is omitted and if the
date ifwell-formed in the Gregorian calendar, then the date is treated as if it used the @#DGREGORIAN@
calendar escape. If the calendar escape is otherwise omitted, the date is treated as if it used the
@#DUNKNOWN@ calendar escape.

Note— [GEDCOM 5.5.1] simply says that dateswritten without a calendar escape default to
the Gregorian calendar. ELF’s approach ismore nuanced. If a date explicitly uses the Grego-
rian calendar escape then an invalid date MAY be deleted; if it is written without a calendar
escape then it MUST NOT be, assuming it conforms to the generic date syntax. ELF deviates
from [GEDCOM 5.5.1] in this regard because many current applications fail to include a cal-
endar escapewhen the Julian calendar is used. As a result, dates like “29 FEB 1700” can be
found written without a calendar escape. This date did not exist in the Gregorian calendar
and is not awell-formed date in that calendar, however this rule prevents applications from
deleting it as invalid.

It is RECOMMENDED that, where possible, dates should be entered in ELF datasets using the calendar
in which they were written in the source.

Example — A contemporary record of an event occurring in seventeenth century Mas-
sachusetts would almost certainly be recoded using the Julian calendar, as Massachusetts,
like all the British colonies, did not adopt the Gregorian calendar until 1752. The date of this
event SHOULD therefore be recorded in ELF using the Julian calendar and not converted to
the Gregorian calendar.

3.1.2 Days

The Day production encodes the calendar day component of the date. It is an positive integer which
calendars SHOULDuse to count howmany calendar days into the calendarmonth the specified calendar
day is, with the first calendar day being “1”. Leading zeros preceding a non-zero digit are permitted;
conformant applications MUST attach no significance to them and MAY remove them.

Editorial note — An earlier draft of this standard allowed non-integer calendar day com-
ponents, providing the first character was a decimal digit. The motivation for allowing
this came from consideration of Roman day reckoning. In this system, days are reckoned
backwards from three fixed points in each month, called the kalends, nones and ides. For
example, the day described as “ante diem quintum kalendas Septembres” or “a.d. V Kal.
Sept”, meaning five days before the kalends of September (1 Sept), counting inclusively, is
28 August. If this were considered a separate calendar and non-integer calendar day com-
ponents allowed, the day could be represented as “5K SEP”. However on balance it was felt
this was an unnecessary complication and the facility was removed. The framework is still
flexible enough to handle Roman day reckoning by using separate calendar month compo-

18

Extended Legacy Format (ELF): Date, Age and Time Microformats

nents for the kalends, nones and ides, thus giving 28 August a representation similar to “5
KSEP”.

Editorial note—Should there be a requirement that days numbers increasemonotonically?
Roman day reckoning, which counts days backwards, can still be supported if negative day
numbers are allowed: e.g. “-5 KSEP”. This has the advantage of allowing applications to
sort calendar days without knowing the calendar, and all that would be required to sort
days completely would be to know the order ofmonth names and epoch names.

3.1.3 Months

The Month production encodes the calendar month component of the date. The set of permitted calen-
dar month components in a given calendar is called the set ofmonth names for the calendar. Month
names SHOULD normally be abbreviated forms of their common names, and MUST be at least three
characters long.

Example — The French Republican calendar has twelve months named Vendémiaire, Bru-
maire, Frimaire, Nivôse, Pluviôse, Ventôse, Germinal, Floréal, Prairial, Messidor, Thermi-
dor and Fructidor. In ELF, as described in §4.3, these are abbreviated VEND, BRUM, FRIM,
NIVO, PLUV, VENT, GERM, FLOR, PRAI, MESS, THER and FRUC. In addition, each year had five
or six consecutive intercalary days, or jours complémentaires, which were not part of any
month. For the purposes of representing this calendar in ELF, the intercalary days are con-
sidered a thirteenth month, COMP.

Note—Month names are always upper-case, a constraint guaranteed by the Month produc-
tion. Lower-case, mixed-case, or non-ASCIImonth names MUST NOT be used.

Note—Month names are REQUIRED to be at least three characters long to avoid conflicting
with epoch names.

The following words are reserved and MUST NOT be used asmonth names in any calendar: ABT, AFT,
AND, BCE, BEF, BET, CAL, EST, EVERY, FOR, FROM, INT, POS, REP, TIME, UNCERT, UNK and ZONE.

Note—Many of these words have specific meanings in the ELF date datatypes. The words
EVERY, FOR, POS, REP, TIME, UNCERT, UNK and ZONE are reserved for possible future use be-
cause they describe concepts in [GEDCOM X Dates] or [ISO 8601-2] which are not currently
in ELF. This does not necessarilymean FHISOwill add such functionality to a future version
of ELF.

3.1.4 Years

The Year production encodes the calendar year component of the date. The string matching this
production SHALL be an integer, and MAY be followed by a solidus (U+002F) and another integer.
Either integer MAY begin with a minus sign (U+002D).

19

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note — Negative years and the year zero are supported by this generic date syntax, but
not by any calendar defined in this standard. The intention is that they provide a way of
representing a dates before the epoch of a particular calendarwhere no reverse epoch name
has been defined. This is not expected to be common with real calendars.

Editorial note — One specific example where it might occur is if a future version of ELF
defines a calendar to represent Julian days, for use in defining epochs. The epoch for the
Julian day is in the Gregorian year 4714 BC, but some other calendars, such as the Byzantine
calendar, have earlier epochsmeaning their epoch occurs on a negative Julian day.

When the calendar year component contains no solidus and second integer value, the integer given is
the logical year number. A conformant applicationMUST attach no significance to its particular lexical
form, and MAY add or remove leading zeros preceding a non-zero digit.

A calendar year component with two integers is called a dual year, and is used when the historical
andmodern reckoning of years differ. The first integer in a dual year is the historical year; the second
integer is the logical year which MAY be given in abbreviated form.

Example — The principal use of dual years is to encode dates which were recorded using
years beginning on 25 March, as was the practice in many parts of the world in mediæval
and early modern times. Charles I’s execution occurred on 30 January in the logical year
1649, but the historical year 1648. To avoid ambiguity, the year can be written 1648/1649.
ELF supports this and allows the date to be recorded as “30 JAN 1648/1649”. In this case
the logical year is not abbreviated.

The dual year syntax is only used when there are genuine differences in the conventional reckoning
of years. Dual years SHOULD be used during periods when use of a historical year differing from the
logical year was common, even if the source in question did not use the historical year. This is to
remove any potential ambiguity.

Example— The date of Charles I’s execution SHOULD NOT be written “30 JAN 1649”, even
though this is technically correct as 1649 is the logical year, as reckoned with 1 January as
the start of the new year. This is true even if the date was quoted from a modern book
which wrote it using the logical year. The form “30 JAN 1648/1649” avoids any possible
ambiguity over which new year was being used.

Dual years MUST NOT be used simply to record an error in the year as stated in a source.

20

Extended Legacy Format (ELF): Date, Age and Time Microformats

Example— If a parish register includes a baptism entry dated 12 Jan 1842, but the context
and other circumstantial evidencemakes it clear that the yearwas incorrectlywritten in the
register and was in fact 1845, this MUST NOT be recorded in ELF as “12 JAN 1842/1845”.

When serialising a date, a dual year MUST be used if the historical year and logical year differ, and
MUST NOT be used if they are equal.

When serialising a dual year, applications MAY abbreviate the logical year to just the last two digits if
the difference between the historical year and the logical year is less than 10 years, or MAY abbreviate
it to just the last one digit if the difference between the historical year and the logical year is no more
than 1 year. If the historical year and the logical year differ by 10 or more years, abbreviated form
MUST NOT be used. When the logical year is abbreviated, anyminus sign is dropped in the abbreviated
form. Where possible, logical years SHOULD be abbreviated to two digits.

Example—The date of Charles I’s executionMAY bewritten in abbreviated form as “30 JAN
1648/49” or as “30 JAN 1648/9”. The former is RECOMMENDED as this is compatible with
the [GEDCOM 5.5.1] standard, though both forms can be found in current GEDCOM files, as
can the unabbreviated form.

Example—Abbreviated formMUST NOT be used if dual years are being used in the Byzantine
calendar to express years using standard Byzantine epoch and the Alexandrian epoch. This
is because the historical year and logical yearwill differ by 16 or 17 years, depending on the
specific date.

A specific calendar SHOULD normally place further restrictions on how dual years can be used, and
any dates using dual years which fail to conform to any such calendar-specific restrictions are not
well-formed dates.

Note — This is necessary if applications are to have understanding of what the historical
date means. A date of “@#DJULIAN@ 1740/1620” is perfectly well-defined insofar that
it represents the Julian year A.D. 1620 and which for some reason was conventionally
recorded as 1740 at the time, but without an understanding of why this was done, it is
difficult for an application to know what to do with this information. In fact, the Julian
calendar defined in §4.2 only allows dual years when the historical date and logical date
differ by exactly one year. “@#DJULIAN@ 1740/1620” is not therefore a well-formed date.

Calendars MUST NOT place further restrictions on when the abbreviated format can be used.

Note— This is because abbreviated form is considered part of the generic date syntax, and
not specific to any calendar. It is intended that applications can parse dual years to extract
the historical date and logical date even in unknown calendars.

21

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note— [GEDCOM 5.5.1] includes support for dual years, though only with dates in the Gre-
gorian calendar. This is unfortunate as dual years are principally used with dates in the Ju-
lian calendar, and the example given in [GEDCOM 5.5.1] is seemingly in the Julian calendar.
Nevertheless, many applications do implement dual year support. In [GEDCOM 5.5.1], dual
yearsMUST bewritten in abbreviated formwith the logical year shortened to two years. ELF
relaxes this restriction as dual years are commonly found unabbreviated or with a single-
digit logical date.

Dual years in [GEDCOM 5.5.1] were probably only intended for years beginning on Lady
Day, though the standard is not quite explicit in saying so; however the same facility read-
ily accommodates years beginning on arbitrary days, and some current applications imple-
ment this. ELF generalises this further by allowing the historical year and logical year to
differ arbitrarily in the generic date syntax, though of the calendars currently defined, only
the Julian calendar allows dual years, and then only when the historical year and logical
year differ by exactly one year.

When parsing a dual year, a conformant application MUST treat the second integer as an abbreviated
logical year if it could have been produced by the serialisation rule for abbreviated logical years,
above, and otherwise MUST NOT.

Example — The dual year “1616/8” is not in abbreviated form because there is no logical
year number ending in 8 which is at most one year away from the historical year 1616. This
is therefore considered an unabbreviated dual year, representing the historical year 1618
and the logical year 8. Very probably this will result in the date not beingwell-formed in the
applicable calendar, in which case the application MAY reject it.

Conformant applicationsMAY alter the lexical formof a dual year in anyway, providing the logical year
and historical year it represents is unchanged, and MUST NOT attach any significance to its particular
lexical form.

Note — This allows applications to store the calendar year component of the date as two
integers internally, and regenerate its lexical form upon serialisation.

The calendar MAY define further restrictions on the range of integers permitted as logical years. Any
such restrictions apply regardless of whether dual years are in used.

3.1.5 Epochs

The Epoch production encodes the epoch name component of the date, which specifies both the par-
ticular epoch from which calendar years are numbered and the direction of the numbering. Each
calendar specifies the set of permitted epoch names components for that calendar.

Example—The Julian calendar defined in §4.2 includes the epoch names “B.C.” and “A.D.”,
standing for Before Christ and Anno Domini, respectively. Both epoch names state that cal-
endar years are counted from an epoch on the Julian date 1 January A.D. 1, nominally the

22

Extended Legacy Format (ELF): Date, Age and Time Microformats

date for the birth of Jesus Christ, but for “B.C.” calendar years are counted backwards from
that epoch, while for “A.D.” calendar years are counted forwards.

Note — The epoch name always comes after the calendar year component in the generic
date syntax, despite certain epoch names being conventionally written before the logical
year number in English. For example, it is normal to write “AD 1752” in English, but the ELF
representation is “1752 A.D.”. A conformant application MUST NOT accept “A.D. 1752” as
a valid date, as it does not match the Date production.

The Epoch production requires epoch names either to be exactly two characters long, or to include at
least one full stop (U+002E) or underscore (U+005F), or to begin with a dollar sign (U+0024).

Note— This ensure that no month name is syntactically allowed as an epoch name, or vice
versa. This ensures that a string like “1 JAN” cannot match the Date production.

Epoch names SHOULD normally be an acronym or initialism with full stops between letters. The two-
letter form of epoch names, without a full stop, underscore or leading dollar, is deprecated. If an
application encounters such a epoch name, it SHOULD convert it into an initialism by inserting a full
stop between the two letters and another after the second letter.

Note— Two-letter epoch names without full stops are allowed in ELF because “BC” is mod-
erately frequently found in current GEDCOM files, even though [GEDCOM 5.5.1] requires it
to be spelled “B.C.”. This rule converts “BC” to “B.C.”.

Epoch names beginning with a dollar sign are reserved for future use. Conformant applications MUST

accept them, but calendars MUST NOT define any such epoch names.

Editorial note — This specification of epoch names is designed to be usable to implement
regnal years. In such a scheme, the instant of accession of each monarch would be an
epoch, and a forwards epoch name would be used to reference it, for example “25 OCT 3
HENRY_V”. However to accommodate monarchs with a single name and no regnal number
(e.g. Victoria or Tutankhamun), as well as to allow monarch names in foreign scripts, the
dollar sign is reserved as a possible sigil for epoch names. This would allow “$昭和”, for
example, to represent the epoch at the start of the Shōwa period in Japan.

The words “TO” and “AT” are reserved and MUST NOT be used as epoch names in any calendar.

Note— The word “AT” is included here for future compatibility; the word “TO” is reserved
because it is used in date periods in §3.4.

Editorial note— An earlier draft of this standard included the following paragraph:

23

Extended Legacy Format (ELF): Date, Age and Time Microformats

If a calendar defines multiple epoch names for the same epoch, and which
are either all forwards epoch names or all reverse epoch names, applications
SHOULD treat those epoch names as interchangeable.

This was added to allow the Julian and Gregorian calendars to define “B.C.E.” as an alias
for “B.C.”, however the current draft does not do that, and it seems an unnecessary com-
plication. If the BCE form is added, this paragraph needs reinstating.

A calendar MAY require an epoch name to be present, MAY allow it to be omitted, and MAY define no
epoch names thereby requiring it to be omitted. In calendars where the epoch name is OPTIONAL, the
calendar SHOULD define an explicit epoch name that is equivalent to an omitted epoch name. This
epoch name is called the default epoch name for the calendar.

Example— The Julian calendar defined in §4.2 provides the “A.D.” epoch name to serve as
its default epoch name.

Editorial note — The French Republican calendar, as currently defined in §4.3, does not
properly define an epoch name, or equivalently leaves its sole epoch name anonymous. This
is allowed, but is not recommended. If the French Republican epoch name remains anony-
mous, the above text should perhaps be changed.

3.2 Date modifiers

The generic date syntax described in §3.1 provides a means of specifying a particular date, but does
not provide a way of describing dates which are approxiately stated, nor of giving natural language
descriptions, nor of stating a imprecise date via its precision range. ELF provides several extensions to
the generic date syntax to provide this functionality. Syntactically, these are expressed by prefixing
the generic date syntax with a token called date modifier.

Example— An “ABT” date modifier is introduced in §3.2.1. It is placed before the date, as in
“ABT JAN 1901”.

Editorial note— This draft, like [GECOM 5.5.1], does not allow more than one of these facil-
ities to be used on the same date. It seems potentially useful to remove this restriction, for
example by allowing “FROM ABT 1798 TO 2 JAN 1842”. There would be no ambiguity
in the grammar with such constructs and their meaning would generally be well defined.
Backwards compatibility could be handled by saying that applications SHOULD NOT produce
such constructs but MUST be able to read them. This would also allow constructs such as
“EST ABT 1881”, which the GEDCOM grammar does not allow but which appears as an ex-
ample in [GEDCOM 5.5.1], albeit as an example of an unnecessary circumlocution. Should
the initial version of ELF support such things?

24

Extended Legacy Format (ELF): Date, Age and Time Microformats

3.2.1 Approximated dates

A dateMAY be preceded by one of the tokens ABT, CAL or EST, as shown in the following DateApprox
production:

DateApprox ::= ("ABT" | "CAL" | "EST") S Date

The ABT token indicates that the date is approximately stated, and that its precision is lower than
would have been the case without the ABT token. It is typically used when there is evidence that the
date given is roughly correct, and SHOULD NOT be used when the date is estimated using statistical
likelihoods or cultural norms.

Example— If it is known that the first and third children in a family were born in 1897 and
1900, respectively, the second child’s birth MAY be recorded as “ABT 1899” as the date of
birth is fairly well bounded, even if twins were involved.

Note — The ABT token is currently by far the most commonly used of the three approxi-
mated tokens.

The EST token also indicates that date is approximately stated, and is an estimate perhaps based only
on statistical likelihoods or cultural norms. An application MAY assume a date written with the EST
token has lower precision than one with the ABT token.

Example— If it is known that the first three children in a family of four were born between
1897 and 1900, a researcher might conclude that it is probable that next child was born
shortly afterwards and estimate the date of birth as “EST 1903”. The ABT token SHOULD

NOT be used in this case, unless there is additional evidence that the fourth child was not
very much younger.

Example — It can sometimes be useful to provide a crude estimate of an individual’s date
of birth. If a baptism register records a baptism in 1692 and gives the father’s name, a
researcher might wish to record an estimate of the father’s date of birth, perhaps to help
disambiguate him from other people of the same name. If such an estimate is to recorded,
it should use the EST token, for example, “EST 1660”.

The CAL token is used to record a date that is not directly stated in a source, but instead has been
calculated fromother known values, typically another date and the duration separating the two dates.
An application MAY assume a date written with the CAL token has a similar or higher precision than
one written with the ABT token.

Example— If a newspaper reports on a golden wedding celebration in the summer of 1948,
this is evidence that the wedding happened 50 years previously, and the date of the mar-
riage MAY be entered as “CAL 1898”.

When a date is calculated from another date and an imprecise duration separating them, use of the
ABT token is RECOMMENDED instead of the CAL token.

25

Extended Legacy Format (ELF): Date, Age and Time Microformats

Example — Like many censuses, the 1880 census of Iceland records individuals’ ages on
their most recent birthday. A person recorded as 72 could have been born in 1807 or
1808. Because the age has been rounded down and is therefore somewhat imprecise, it
is RECOMMENDED that the date of birth be recorded as “ABT 1808” rather than “CAL 1808”.

Note — A CAL token might sometimes be an indicator that the date is of lower reliability
than one without this token, everything else being equal, due to it not being directly stated.

Editorial note— Should FHISO deprecate the CAL token and allow uses of it to be replaced
with ABT? It’s not clear it adds anything useful.

3.2.2 Date phrases and interpreted dates

ELF allows dates to be recorded in natural language. The natural language description of a date is
called a date phrases and is written between parentheses (U+0028 and U+0029).

DateInterp ::= ("INT" S Date S)? "(" DatePhrase ")"
DatePhrase ::= [^#xA#xD()]*

The date phrase is an arbitrary language-tagged string except that it MUST NOT contain parentheses
(U+0028 or U+0029), line feeds (U+000A) or carriage returns (U+000D).

Note— [GEDCOM 5.5.1] only requires that date phrases be “enclosed in matching parenthe-
ses”, which could be interpreted as requiring that any parentheses in the date phrase be
balanced. ELF goes further and prohibits parentheses from occurring in date phrases at all.

Editorial note — The prohibition on these characters is not strictly needed, at least while
the grammar does not allow date phraseswithin date ranges or date periods, though that is
a possible extension which might be made in a future version of ELF. A data model layer
escape mechanism along the lines of the %{…} syntax used in FHISO’s draft Creator’s Name
microformat could allow arbitrary characters to appear in it.

A date phrase SHOULD be a fragment of text quoted from a source, possibly in translation, and SHOULD

only normally be used if the text cannot readily be converted into a date, or where that conversion
would lose useful information. Date phrases SHOULD NOT be used for arbitrary annotations or com-
mentary, and MUST NOT be used in a negative sense to say the event did not occur.

Example—If a source describes an event as happening on “The Feast of St John” in a particu-
lar year, thismight be recorded in a date phrase if therewas insufficient context to establish
whether it referred to the Feast of Nativity of St John the Baptist on 24 June, or the Feast of
St John the Evangelist on 27 December.

26

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note — Historically, some applications have used a date phrase like “Not married” to in-
dicate a marriage did not occur. Such usage is prohibited in ELF and was not allowed in
[GEDCOM 5.5.1]. Conformant applications are permitted to assume a date phrase describes
an actual date, even if the date phrase cannot be interpreted. Fortunately, uses like “Not
married” is largely confined to [GEDCOM 5.3] and earlier which omitted the parentheses
around date phrases. Date phrases written without parentheses will not normally match
the generic date syntax, and will therefore not be parsed as dates in ELF.

The date phrase MAY be accompanied by a date in the generic date syntax preceded by the INT to-
ken. The combination is called an interpreted date and its date SHOULD be an interpretation of the
associated date phrase in the context of source containing it.

Example — “INT @#DJULIAN@ 18 JUNE 1502 (Saturday before the Feast of the
Nativity of St John the Baptist)” is a valid interpreted date. In this case the date
phrase does not mention the year: perhaps it was inferred from its context or was stated
elsewhere in the document.

Note — An interpreted date might sometimes be of lower reliability than if the date were
written without a date phrase, as the presence of a data phrase typically indicates some
subtlety in interpreting the date.

Being a language-tagged string, a date phrase has a language tag associated with it. This language tag
is not embedded in the date but is provided externally by the serialisation format.

Note — In [ELF Serialisation], the language tag is provided by a LANG tag, which MAY be a
substructure of the DATE tag, failing which it MAY be a substructure of one of the superstruc-
ture of the DATE tag, failing which it MAY be in the ELF header. For example,

2 DATE INT 25 JAN 1840 (L'an mil huit cent quarante, le
→ vingt-cinquième jour du mois de janvier)

3 LANG French

Editorial note—Review the previous note once [ELF Serialisation] has been developed fur-
ther.

3.2.3 Date ranges

A date range is a time interval used to record an unknown date which can be placed within certain
bounds. A date range MAY be bounded from below, from above, or both. It matches the DateRange
production:

DateRange ::= ("BEF" | "AFT") S Date | "BET" S Date S "AND" S Date

A date range beginning with a BEF token represents an unknown instant on or before the specified
date. A date range beginningwith a AFT token represents an unknown instant on or after the specified
date.

27

Extended Legacy Format (ELF): Date, Age and Time Microformats

It is RECOMMENDED that theBEF andAFT forms of date ranges are only used if it is believed the specified
date is probably within a few years of the unknown date being represented.

Example — If an individual was elected mayor of a city in 1745 and the cultural norms of
the time mean the person was likely a middle-aged adult, their date of birth SHOULD NOT be
recorded as “BEF 1745”. Even though this would literally be true, insofar as the personwas
indeed born before 1745, and this representation is not prohibited, it is NOT RECOMMENDED.
The person could well have been born in the previous century which would be stretching
the definition of “a few years”. If there is need to give a date of birth, a crude estimate given
with the EST token might be preferable.

A date range using the BET… AND construct represents an unknown instant on or after the first speci-
fied date, and on or before the second specified date. This is a way of specifying an unknown date in
terms of its precision range. In this form of date range, the first specified date MUST NOT be later than
the second specified date.

Example— If someone’s age is recorded as 26 on a census conducted on 3 April 1881, their
date of birth could be recorded as “BET 4 APR 1854 AND 3 APR 1855”. However the
usual practice in GEDCOM is to record this as “ABT 1855”.

Editorial note— Should ELF encourage users to prefer the date range form in the previous
example?

Date ranges using the BET … AND format contain two dates and therefore potentially two calendar
escapes. The second date does not inherit the calendar escape from the first date, and it MUST be
respecified when required. It is RECOMMENDED that, where possible, the same calendar escape be
used on both dates.

Note — Although [GEDCOM 5.5.1] supports date ranges where the two dates use different
calendar escapes, not all current implementations support them. They are best avoided
where possible.

3.3 The elf:DateValue datatype

The elf:DateValue datatype is used to record historical dates. It allows dates to be represented
using the generic date syntax or any of themodifier forms given in §3.2. It MAY also be a date period as
defined in §3.4. Its lexical space is the set of stringswhichmatch the following DateValue production:

DateValue ::= Date | DateApprox | DateInterp | DateRange | DatePeriod

Editorial note — In the many places in ELF, it is wrong to use a date period where an
elf:DateValue is required. This is not the case with the other options allowed in the
DateValue production. The difference is that a date period represents a state which per-
sisted for an extended time interval, while the others represent a single instant (or at least

28

Extended Legacy Format (ELF): Date, Age and Time Microformats

an event of short duration that is conveniently approximated to an instant). FHISO are con-
sidering removing DatePeriod from the DateValue production, above, and allowing it as
an explicit option in certain contexts. However this introduces the same complications as
introducing separate elf:AgeWord datatype, and which are discussed in an editorial note
at the end of §6.

The elf:DateValue datatype is a language-tagged datatype, however the associated language tag is
ignored unless the date contains a date phrase. Conformant applications are not required to preserve
the language tag of dates without a date phrase, and MAY replace it with an arbitrary language tag.

Note — This allows applications to store the language tag as part of the date phrase, and
allows them to serialise an elf:DateValue that does not contain a date phrase using an ar-
bitrary language tag. In particular, this means a date read from an ELF file in one language
MAY be serialised as part of an ELF file in another language without explicitly annotating it
with a LANG substructure, unless the date contains a date phrase.

Formally, the elf:DateValue datatype is a structured language-tagged datatype which has the fol-
lowing properties:

Datatype definition

Name https://terms.fhiso.org/elf/DateValue
Type http://www.w3.org/2000/01/rdf-schema#Datatype
Pattern See below
Supertype http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
Abstract false

The pattern for this datatype is as follows:

((ABT|CAL|EST|BEF|AFT|TO)[\t\r\n]+)?(@#D[A-Z][A-Z]*@[\t\r\n]+)?(([0-9]+[\t\r\n]+)?[A-Z]
[A-Z0-9][A-Z0-9]+[\t\r\n]+)?-?[0-9]+(/-?[0-9]+)?([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*[._]
[A-Z0-9._]*)|\$[^ #x9#xA#xD]+)|(INT[\t\r\n]+(@#D[A-Z][A-Z]*@[\t\r\n]+)?(([0-9]+[\t\r\n]+
)?[A-Z][A-Z0-9][A-Z0-9]+[\t\r\n]+)?-?[0-9]+(/-?[0-9]+)?([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*
[._][A-Z0-9._]*)|\$[^ #x9#xA#xD]+)[\t\r\n]+?)\([^\r\n()]*\)|BET[\t\r\n]+(@#D[A-Z][A-Z]*
@[\t\r\n]+)?(([0-9]+[\t\r\n]+)?[A-Z][A-Z0-9][A-Z0-9]+[\t\r\n]+)?-?[0-9]+(/-?[0-9]+)?
([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*[._][A-Z0-9._]*)|\$[^ #x9#xA#xD]+)[\t\r\n]+AND[\t\r\n]+
(@#D[A-Z][A-Z]*@[\t\r\n]+)?(([0-9]+[\t\r\n]+)?[A-Z][A-Z0-9][A-Z0-9]+[\t\r\n]+)?-?[0-9]+
(/-?[0-9]+)?([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*[._][A-Z0-9._]*)|\$[^ #x9#xA#xD]+)
|FROM[\t\r\n]+(@#D[A-Z][A-Z]*@[\t\r\n]+)?(([0-9]+[\t\r\n]+)?[A-Z][A-Z0-9][A-Z0-9]+
[\t\r\n]+)?-?[0-9]+(/-?[0-9]+)?([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*[._][A-Z0-9._]*)
|\$[^ #x9#xA#xD]+)([\t\r\n]+TO[\t\r\n]+(@#D[A-Z][A-Z]*@[\t\r\n]+)?(([0-9]+[\t\r\n]+)?
[A-Z][A-Z0-9][A-Z0-9]+[\t\r\n]+)?-?[0-9]+(/-?[0-9]+)?([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*
[._][A-Z0-9._]*)|\$[^ #x9#xA#xD]+))?

Note—The grammar productions given in this standard provide a more useful description
of datatype for a human reader. The pattern above is used during datatype correction in
certain OPTIONAL contexts. It was generated automatically from the grammar productions,
and any discrepancy between the grammar and this pattern is unintentional.

29

Extended Legacy Format (ELF): Date, Age and Time Microformats

3.4 The elf:DatePeriod datatype

A date period is a time interval used to record a state of being that persisted throughout the stated
time intervalwhich represents an extended period of history; they are also used to record the period
of coverage of a source. They are represented in ELF using the elf:DatePeriod datatype whose
lexical space is set set of strings which match the following DatePeriod production:

DatePeriod ::= "FROM" S Date (S "TO" S Date)? | "TO" S Date

Use of a date period does not necessarily mean the state was believed to have begun on the specified
“from” date, nor that it ended on the specified “to” date, though where possible this is RECOMMENDED.
Either the start date or the end date MAY be omitted from the date period, in which case the missing
date is interpreted as an unknown date.

Example — Abraham Lincoln was President of the United States from 1861 to 1865. This
could recorded using the date period “FROM 1861 TO 1865”, or more precisely as “FROM
4 MAR 1861 TO 15 APR 1865”. If it were unknown when Lincoln’s presidency began, it
could be written “TO 15 APR 1865”. If it was also known that Lincoln was president at the
time of the Battle of Gettysburg in July 1863, the date period of his presidency could be writ-
ten “FROM JUL 1863 TO 15 APR 1865”. This does not imply Lincoln became president in
1863, only that he was president for the whole of the period from 1863 to 1865.

Editorial note—Neither GEDCOMnor this draft of ELF has away of sayingwhether the date
period is believed to be the complete period duringwhich the state persisted. This is perhaps
a shortcoming that a future version of ELF should resolve. The obvious solution is to say
that a date period always represents the full period, and allow the various date modifiers
from §3.2 to be used in the end instants of the date period. In the previous example where
Lincoln was known to have been president for the Battle of Gettysburg, and to have died
in office on 15 April 1865, this could be written “FROM BEF JUL 1863 TO 15 APR 1865”.
This could be done without allowing arbitrary nested date modifiers.

Note—The difference between a date range and a date period is sometimesmisunderstood,
and applications should be alert to the wrong representation being used. A date range is
used to record an instant, or an event of short duration, when its date is not precisely known,
whereas a date period is used to record a state that persisted throughout the specified time
interval.

Example— Civil birth, marriage and death registrations in England andWales are indexed
in quarterly volumes which do not list the precise date of the event. The coverage of this
source is represented in ELF using a date period:

0 @S1@ SOUR
1 TITL GRO Marriages Index
1 DATA

30

Extended Legacy Format (ELF): Date, Age and Time Microformats

2 EVEN MARR
3 DATE FROM 1 JAN 1898 TO 31 MAR 1898

However the event itself MUST NOT be recorded using a date period because the marriage
did not take place over an extended period: it happened on one particular datewhich is not
precisely known. For this purpose a date range SHOULD be used.

0 FAM
1 MARR
2 DATE BET 1 JAN 1898 AND 31 MAR 1898

A less precise alternative would be to just give a year.

Datatype definition

Name https://terms.fhiso.org/elf/DatePeriod
Type http://www.w3.org/2000/01/rdf-schema#Datatype
Pattern See below
Supertype http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
Abstract false

The pattern for this datatype is as follows:

FROM[\t\r\n]+(@#D[A-Z][A-Z]*@[\t\r\n]+)?(([0-9]+[\t\r\n]+)?[A-Z][A-Z0-9][A-Z0-9]+
[\t\r\n]+)?-?[0-9]+(/-?[0-9]+)?([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*[._][A-Z0-9._]*)
|\$[^ #x9#xA#xD]+)([\t\r\n]+TO[\t\r\n]+(@#D[A-Z][A-Z]*@[\t\r\n]+)?(([0-9]+[\t\r\n]+)?
[A-Z][A-Z0-9][A-Z0-9]+[\t\r\n]+)?-?[0-9]+(/-?[0-9]+)?([\t\r\n]*([A-Z]([A-Z]|[A-Z0-9._]*
[._][A-Z0-9._]*)|\$[^ #x9#xA#xD]+))?

4 Calendar definitions

This section defines four standard calendars for use with ELF: the Gregorian, Julian, Hebrew and
French Republican calendars. Conformant applications are REQUIRED to support all four.

Editorial note— There is no technical need for applications to support anything other than
the Gregorian calendar. Would it be better to make only this one REQUIRED and the others
RECOMMENDED? Ideally, applications would do more than simply check dates are syntacti-
cally valid and would offer conversions between supported calendars, date arithmetic, the
ability to look up the day of the week and the dates of important feast days. Few applica-
tions currently offer this. Would reducing the number of REQUIRED calendarsmake it easier
for vendors to provide such functionality?

Editorial note — The definitions given in this section only specify those details which are
necessary to determine whether a date is well-formed in the given calendar. Should these
descriptions be expanded to give more details to help applications convert between calen-
dars?

31

Extended Legacy Format (ELF): Date, Age and Time Microformats

4.1 The Gregorian calendar
Note — The Gregorian calendar is the name given to the now ubiquitous calendar intro-
duced by Pope Gregory XIII in 1582 to correct the Julian calendarwhich was slowly drifting
relative to the seasons. It is represented by the @#DGREGORIAN@ calendar escape, and is also
ELF’s default calendar, used whenever a date has no calendar escape and is well-formed in
the Gregorian calendar.

The Gregorian calendar has an epoch at the start of the calendar day 1 January 1 AD, as expressed
in the Gregorian calendar, and two epoch names relative to that epoch: a reverse epoch name “B.C.”,
and a forwards epoch name “A.D.”. The latter is the default epoch name for the calendar, and its name
SHOULD be omitted.

Example — The date “24 DEC 2018 A.D.” is equivalent to “24 DEC 2018”. The latter is
RECOMMENDED for compatibility with [GEDCOM 5.5.1] which does not support the “A.D.”
epoch name.

Editorial note — Do we want “B.C.E.” and “C.E.” (standing for Before Common Era and
Common Era, respectively) as aliases? There is no technical justification for adding them.
Supporting “BCE” as an alias for “B.C.E.” is problematic as it is three letters long, meaning
matches the Month production rather than Epoch production. However “BCE” has been
reserved so it cannot be used as amonth name.

Regardless of epoch name, the logical year SHALL be an integer greater than 0.

Note — This prohibits negative or zero year numbers as they are not needed. The year
before “1 A.D.” is “1 B.C.”.

Note— [GEDCOM5.5.1] says that logical yearsMUST be 3 or 4 digits long, and presumably re-
quires dates in the first century to be zero padded. This standard has no such requirement,
and many current applications do not enforce this requirement.

Dual years MUST NOT be used in the Gregorian calendar.

Note—This is a deviation from [GEDCOM 5.5.1] which allows dual years only on Gregorian
dates. In this standard, a datewith a dual year is notwell-formed in the Gregorian calendar.
This means a date using a dual year and no explicit calendar escape will be assigned the
@#DUNKNOWN@ calendar escape.

Editorial note — In practice there is a very strong likelihood that the Julian calendar is in-
tended. This draft could have altered the default calendar rules in §3.1.1 so that dates using
dual years and no explicit calendar escape were automatically labelled @#DJULIAN@. The
reason this was not done is that an ELF file containing such dates is likely to have many
other miscalendared dates but which are well-formed in the Gregorian calendar and so go

32

Extended Legacy Format (ELF): Date, Age and Time Microformats

undetected. Flagging those with dual years with @#DUNKNOWN@ will hopefully bring this to
the researcher’s attention, with the result that all the miscalendared dates are fixed.

Every calendar year in the Gregorian calendar consists of 12 calendar months. Their month names
are given in the table below in order of their occurrence in the calendar year. The table also gives the
usual form of their name in English, and the number of calendar days in each month. The calendar
days in each calendar month are numbered sequentially starting with 1.

JAN January 31 days
FEB February 28 or 29 days — see below
MAR March 31 days
APR April 30 days
MAY May 31 days
JUN June 30 days
JUL July 31 days
AUG August 31 days
SEP September 30 days
OCT October 31 days
NOV November 30 days
DEC December 31 days

The number of calendar days in February varies depending on the logical year. The rules for deter-
mining this number in years with the “A.D.” epoch name are as follows:

— If the logical year number is exactly divisible by 400, then February has 29 days.
— Otherwise, if the logical year number is exactly divisible by 100, then February has 28 days.
— Otherwise, if the logical year number is exactly divisible by 4, then February has 29 days.
— Otherwise, February has 28 days.

In the Gregorian calendar, a calendar year in which February has 29 calendar days is called a leap
year, while a calendar year in which February has only 28 calendar days is called a non-leap year.

Note—Other calendars defined the phrases leap year and non-leap year differently.

For years with the “B.C.” epoch name, the logical year number is subtracted from one to get zero or
a negative number, which is then used in place of the logical year in the preceding rules.

Example — The year 5 BC was a leap year in the proleptic Gregorian calendar, meaning
February had 29 calendar days. This is because subtracting 5 from 1 gives �4 which is ex-
actly divisible by 4.

33

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note — Although the Gregorian calendar was first introduced in 1582, ELF allows its use
proleptically, including for dates BC. This is a partial departure from [GEDCOM 5.5.1] which
only allows incomplete dates referencing only a calendar year to use the “B.C.” epoch name.

A date which uses a calendar day number which is greater than the number of calendar days in the
specified year and month is not a well-formed date.

Example — The date “29 FEB 2018” is not well-formed in the Gregorian calendar because
February only had 28 days in 2018 due to 2018 not being exactly divisible by 4.

4.1.1 The elf:DateExact datatype

The elf:DateExact datatype is used to record the creation or modification date of various objects in
the ELF datamodel using the Gregorian calendar. The lexical space of this datatype is the set of strings
whichmatch the following GregDate production and which are additionallywell-formed dates in the
Gregorian calendar defined in §4.1.

GregDate ::= GregDay S GregMonth S GregYear

GregDay ::= [0-9] [0-9]?
GregMonth ::= "JAN" | "FEB" | "MAR" | "ARP" | "MAY" | "JUN" | "JUL"

| "AUG" | "SEP" | "OCT" | "NOV" | "DEC"
GregYear ::= [0-9] [0-9] [0-9] [0-9]

Example — The string “24 DEC 2018” matches the GregDate production and is a well-
formed date in the Gregorian calendar. It is therefore in the lexical space of elf:DateExact.
“54 NOV 2018” is not in the lexical space of elf:DateExact despite matching the
GregDate production because it is not a well-formed date in the Gregorian calendar due to
November only having 30 days.

Note — This datatype is more restricted than a Gregorian date written in the generic date
syntax due to the following additional constraints:

— There MUST NOT be a calendar escape.
— There calendar day and calendar month MUST be present.
— The calendar year component MUST be four digits long.
— The epoch name MUST NOT be present.
— The date modifiers defined in §3.2 MUST NOT be used.
— It MUST NOT be a date period.

Formally, the elf:DateExact datatype is a structured non-language-tagged datatype which has the
following properties:

34

Extended Legacy Format (ELF): Date, Age and Time Microformats

Datatype definition

Name https://terms.fhiso.org/elf/DateExact
Type http://www.w3.org/2000/01/rdf-schema#Datatype
Pattern [0-9]{1,2}[\t\r\n](JAN|FEB|MAR|ARP|MAY|JUN|JUL|AUG|SEP|OCT

|NOV|DEC)[\t\r\n][0-9]{4}
Supertype No non-trivial supertypes
Abstract false

Note—The pattern in the table above has been split on to three lines for convenience of pre-
sentation; it is, however, really one pattern and contains no whitespace or line breaks. Any
functional difference between the GregDate production and the pattern specified above is
unintentional.

Note — The elf:DateExact datatype is not specified as a subtype of the elf:DateValue
datatype because the latter is a language-tagged datatype.

4.2 The Julian calendar
Note — The Julian calendar is the name given to the calendar introduced by Julius Caesar
in 45 BC and subsequently amended by Augustus in about 8 BC to correct an error in the
application of its leap year rule during its first three decades. The Augustan form of the
Julian calendar is represented by the @#DJULIAN@ calendar escape. Because the Gregorian
calendar derived from the Julian calendar, many of the details here are the same as those
in §4.1.

The Julian calendar has an epoch at the start of the calendar day 1 January 1 AD, as expressed in the
Julian calendar, or 30 December 1 BC, as expressed in the proleptic Gregorian calendar. The Julian
calendar has the same two epoch names, “B.C.” and “A.D.”, as the Gregorian calendar, but defined
relative to the Julian epoch instead of the Gregorian epoch. The “A.D.” epoch name is the default epoch
name for the calendar, and its name SHOULD be omitted.

As for the Gregorian calendar, regardless of epoch name, the logical year SHALL be an integer greater
than 0.

Dual years are only allowed when the logical year and the historical year differ by exactly one year.
They are used to represent the differing conventions for the first day of the year.

Note — This is a deviation from [GEDCOM 5.5.1] where dual years are not permitted with
the Julian calendar.

Note — Logical years always begin on 1 January, but historical years can begin on an ar-
bitrary day of the year which can result in the historical year being ahead or behind the
logical year. Because the use of dual years is not restricted to just years beginning on Lady
Day, it is not in general possible to tell simply from the fact that a dual year was used what

35

Extended Legacy Format (ELF): Date, Age and Time Microformats

convention for the start of the year. This can usually be inferred from context, and the
logical year allows an application to process the date without knowing this.

Example— In France, the year was reckoned to begin on Easter Sunday until 1564 (or 1565
— the change did not happen uniformly). An application cannot tell when reading the date
“10 FEB 1521/22” whether it has beenwritten using the French convention of starting the
year on Easter Sunday or the English convention of starting the year on Lady Day, but it is
not normally necessary to know this as this date refers to the same calendar day regardless
of when the historical year began.

This is an example where the historical year alone could be ambiguous due to Easter being
a movable feast. In France, there were two days which would have been written “1er jour
d’avril, 1522”, as Easter was early in the logical year 1522 and late in 1523. For both days
described as 1 April 1522, the historical year is 1522, but only for the first is the logical year
also 1522: for the second, it is 1523. This means the first date MUST be encoded in ELF as
“1 APR 1522”, while the second SHOULD be encoded as “1 APR 1522/23” (though it MAY

alternatively be encoded as “1 APR 1523”, without using a dual year).

Every calendar year in the Julian calendar, as reckoned by logical year, consists of the same 12 cal-
endar months as the Gregorian calendar. Their month names, the usual English form of their name,
and the number of calendar days in each calendar month is as given for the Gregorian calendar in
the table in §4.1. The only difference between the calendars is the rule for determining the number
of calendar days in February.

In the Julian calendar, the rules for determining the number of calendar days in February are as
follows:

— If the logical year number is exactly divisible by 4, then February has 29 days.
— Otherwise, February has 28 days.

The terms leap year and non-leap year are defined as for the Gregorian calendar.

Example — The year 1900 was a leap year in the Gregorian calendar, as 1900 is divisible
by 100, but it was not a leap year in the Julian calendar. This means “29 FEB 1900” is a
well-formed date in the Gregorian calendar, but not in the Julian calendar.

For years with the “B.C.” epoch name, the logical year number is subtracted from one to get zero or
a negative number, which is then used in place of the logical year in the preceding rules.

Note — The year 5 BC was a leap year according to ELF’s definition of the Julian calendar,
because subtracting 5 from 1 gives �4 which is divisible by 4. In fact, the year 5 BC was
almost certainly not a leap year as the Augustan reform was still taking effect at this point.
There is disagreement between scholars on the exact details of the reform, but is generally
accepted that by AD 8 the rule for leap years given above was being applied correctly. Any

36

Extended Legacy Format (ELF): Date, Age and Time Microformats

use of the Julian calendar (in its final Augustan form) before about AD 5 should therefore
be regarded as proleptic.

A date which uses a calendar day number which is greater than the number of calendar days in the
specified year and month is not a well-formed date.

4.3 The French Republican calendar
Note — The French Republican calendar or French Revolutionary calendar are the names
given to the new calendar adopted in 1794 by the French National Convention. It is repre-
sented in ELF by the @#DFRENCH R@ calendar escape.

The French Republican calendar has an epoch at the start of the Gregorian calendar day 22 September
1792, the date the First French Republic was founded. This date is identified as 1 Vendémiaire I in the
new calendar.

Note— It is common to write French Republican calendar years using Roman numerals.

The calendar has a single anonymous forwards epoch name. It does not provide a backwards epoch
name for referring to dates before the founding of the First Republic, nor are zero or negative logical
years permitted.

Editorial note — If it proves undesirable to have an anonymous epoch name, the usual
phrases are “l’époque républicaine” and “l’ère de la republique”. An epoch name of “E.R.”
would therefore seem appropriate.

The logical year SHALL be an integer greater than 0 and SHOULD be no greater than 18. Applications
MAY consider any date with a logical year greater than 18 to be not well-formed.

Note — The placement of leap years in the French Revolutionary calendar was never de-
fined satisfactorily due to an ambiguity in the legislation that had not been resolved when
the calendar was abolished. The calendar was in actual use during years II to XIV, and
the placement of leap years in the period between years I and XVIII is unambiguous. The
calendar was used again very briefly during the Paris Commune in May 1871 (Floréal and
Prairial LXXIX), and applications are encouraged to support this, but ELF does not require
this as the number of sources of genealogical relevance from the Paris Commune is likely
to be small.

Dual years MUST NOT be used in the French Republican calendar.

Every calendar year in the French Republican calendar consists of 12 calendar months, which are fol-
lowed by 5 or 6 intercalary days or jours complémentaireswhich ELF treats as a thirteenth month.
Their month names are given in the table below in order of their occurrence in the calendar year.
The table also gives the usual form of their name in French, and the number of calendar days in each
month. The calendar days in each calendar month are numbered sequentially starting with 1.

37

Extended Legacy Format (ELF): Date, Age and Time Microformats

VEND Vendémiaire 30 days
BRUM Brumaire 30 days
FRIM Frimaire 30 days
NIVO Nivôse 30 days
PLUV Pluviôse 30 days
VENT Ventôse 30 days
GERM Germinal 30 days
FLOR Floréal 30 days
PRAI Prairial 30 days
MESS Messidor 30 days
THER Thermidor (or Fervidor) 30 days
FRUC Fructidor 30 days
COMP Jours complémentaires 5 or 6 days — see below

Note — The month of Thermidor was also called Fervidor, however ELF uses the month
name THER regardless of which form the source uses. FERV MUST NOT be used.

In the French Republican calendar, a calendar yearwith 6 jours complémentaires is called a leap year,
while a calendar year with only 5 jours complémentaires is called a non-leap year. If the logical year
number is 3, 7, 11 or 15, the calendar year was a leap year; all other years with logical year numbers
between 1 and 18, inclusive, were non-leap years.

Note — This standard does not specify when leap years occurred after year XVIII because
the legislation was ambiguous. The legislation required leap years to be arranged such that
the autumnal equinox would fall on the first day of the year, 1 Vendémiaire, as observed
from the Paris Observatory. Under this rule, the leap year after year XV would have been
five years later, in year XX. However the legislation also said that leap years were every
four years, in which case the next leap yearwould have been XIX. A solution was proposed
by Charles-Gilbert Romme, one of the creators of the calendar, which would have placed
a leap year in year XX, and then one every four years with similar rules as the Gregorian
calendar applying every century. No decision had been made when Napoléon abolished
the calendar, so no definitive statement can be made on which subsequent years were leap
years, and this standard does not require any particular interpretation. Applications MAY

do any of the above and remain conformant; they MAY also reject anything after year XVII
as not being well-formed.

A date which uses a calendar day number which is greater than the number of calendar days in the
specified year and month is not a well-formed date. This provision applies to jours complémentaires
too.

38

Extended Legacy Format (ELF): Date, Age and Time Microformats

4.4 The Hebrew calendar
Note — The Hebrew calendar is the name given to the calendar used by Jewish peoples
around the world which developed into its current form in the early ninth century. It is
represented in ELF by the @#DHEBREW@ calendar escape.

The Hebrew calendar has an epoch at the start of the calendar day referred to as 7 September 3761 BC
in the proleptic Gregorian calendar. This date is identified as 1 Tishrei AM 1 in the Hebrew calendar.

Note— The date of this epoch is more commonly quoted as 7 October 3761 BC, which is its
date in the proleptic Julian calendar. This is the date of the start of the Hebrew calendar
year traditionally believed to contain the Creation.

Editorial note — A day in the Hebrew calendar is normally reckoned to begin at sunset,
whichmeans the epoch should properly be at sunset on 6 September 3761BC in the proleptic
Gregorian calendar, or 6 October 3761 BC in the proleptic Julian calendar. However, as
noted in §2.1, the definition of a calendar day given in [ISO 8601] and adopted here says a
calendar day starts at midnight.

The calendar has a single forwards epoch name, “A.M.”, which is the default epoch name for the calen-
dar. It SHOULD be omitted when serialising dates in ELF. The calendar does not provide a backwards
epoch name for referring to dates before the Hebrew epoch, nor are zero or negative logical years
permitted.

Note — [GEDCOM 5.5.1] does allow the “B.C.” epoch name to be used with the Hebrew
calendar, but it seems almost certain this is an error in that standard. ELF does not permit
“B.C.” to be used with this calendar, and any Hebrew dates using of it will not be well-
formed date.

It is NOT RECOMMENDED for dual years to be used with the Hebrew calendar.

Note—This is not an outright prohibition on dual years, and alternative calculations of the
year of Creation were used to number calendar years in early times. These could be used
as historical years, typically differing from the logical year by no more than three years.

Every calendar year in the Hebrew calendar consists of either 12 or 13 calendar months. Theirmonth
names are given in the table below in order of their occurrence in the calendar year. The table also
gives the usual form of their name in English and Hebrew, and the number of calendar days in each
month. The calendar days in each calendar month are numbered sequentially starting with 1.

TSH Tishrei תשרי 30 days
CSH Cheshvan חשוון 29 days, or sometimes 30 days — see below
KSL Kislev כסלו 30 days, or sometimes 29 days — see below
TVT Tevet טבת 29 days
SHV Shevat שבט 30 days
ADR Adar I א אדר 30 days, if present — see below

39

Extended Legacy Format (ELF): Date, Age and Time Microformats

ADS Adar II ב אדר 29 days
NSN Nisan ניסן 30 days
IYR Iyar אייר 29 days
SVN Sivan סיוון 30 days
TMZ Tammuz תמוז 29 days
AAV Av אב 30 days
ELL Elul אלול 29 days

Note— The English names given above are transliterations of the Hebrew, and many vari-
ants of the transliterations can be found. Cheshvan is a shortened form of Marcheshvan
(מרחשון) produced by dropping the first syllable. Adar I and Adar II are otherwise known
as Adar Rishon ראשון) (אדר and Adar Sheni שני) ,(אדר respectively, using the Hebrew
words for first and second. Adar I and II are also sometimes called Adar Aleph and Adar
Bet א) אדר and ב (אדר after the first and second letters in the Hebrew alphabet.

Note — For religious purposes, the calendar year is sometimes said to begin with the cal-
endar month of Nisan. ELF uses the usual civil definition of the year beginning with the
calendar month of Tishrei.

Calendar years containing 13 calendar months are called leap years, and fall in a 19 year cycle called
theMetonic cycle. Calendar yearswhich are not leap years are called non-leap years. To determine
whether a year is a leap year, the logical year number is divided by 19 and the remainder taken to
find the year’s place in theMetonic cycle. If the remainder is 0, 3, 6, 8, 11, 14 or 17 then the year is a
leap year; otherwise it is a non-leap year.

In a non-leap year, the calendar month of Adar I is omitted and Adar II is known simply as Adar
.(אדר) Nevertheless, themonth name used for Adar in a non-leap year is “ADR”, the samemonth name
as Adar I in a leap year. “ADS” is not well-formed when used as amonth name in a non-leap year, and
it is RECOMMENDED that applications rewrite it to “ADR”.

Note—The intended handling of Adar in non-leap years is very poorly unspecified in [GED-
COM 5.5.1]. As Adar I is the extra month inserted into the calendar, it would make sense if
Adar were represented as “ADS” in non-leap years, but in practice this seems not to be what
current vendors do. Possibly because [GEDCOM 5.5.1] describes “ADR” as standing for Adar
rather than Adar I or Adar Rishon, vendors have used “ADR” to represent Adar in non-leap
years and Adar I in leap years. ELF standardises that behaviour.

The rule for deciding when Cheshvan is extended in length to have 30 calendar days, andwhen Kislev
is reduced in length to have 29 calendar days, are somewhat complex and based on when in the week
the Tishreimolad falls.

40

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note— Although an application needs to know how many calendar days are in each calen-
dar month in order to determine whether a date is a well-formed date, an applications can
be conformant without being able to determine whether a date is well-formed. This would
allow a conformant application to support the Hebrew calendar without full knowledge of
how long each calendar month is. An application which cannot determine howmany calen-
dar days are in Cheshvan and Kislev in a particular year, MUST consider “30 CSH” and “30
KSL” to be well-formed regardless of year.

The molad is the calculated instant of the new moon, as seen from Jerusalem. The first molad oc-
curred 5 hours and 204 halakim into Monday, 1 Tishrei AM 1. A helek (plural: halakim) is a tradi-
tional Hebrew subdivision of the hour equal to 3⅓ seconds: there are 1080 halakim in an hour. The
week used by the Hebrew calendar is the standard seven day week.

Note — This time is stated relative to the traditional Hebrew start of the day, which was
at sunset the previous evening; it also uses unequal hours so that the time between sunset
and sunrise is always 12 hours, regardless of the time of year. Applications do not need
to be aware of this detail as all times are expressed using Hebrew time reckoning in this
calculation. All they need to know is that there are 1080 halakim (also spelt “chalakim”) in
an hour, 24 hours in a calendar day, and 7 calendar days in a week.

In the Hebrew calendar calculations in this standard, instants within a week are expressed with as
three integers separated with colons. These being the day number, the number of hours into the day,
and the number of halakim into the hour. Days of the week are numbered with Saturday being 0.

Example— The instant of the first molad can be written 2:5:204, meaning 5 hours and 204
halakim into a Monday.

Themolad for any given calendar month and calendar year is calculated from an earliermoladwhose
time and day of the week are known by adding 4 weeks, 1 day, 12 hours, and 793 halakim per elapsed
calendar month betweenmolads.

Note — This duration is commonly written 4:1:12:793, where the components are weeks,
days, hours and halakim, though the number of weeks can be dropped for the purpose of
determining the length of the calendar year. As 793 halakim does not equate to an integer
number of seconds, doing the calculation in halakim rather than seconds avoids rounding
errors if floating point arithmetic is used.

Note — The computation of the molad is simplified by knowing that a complete 19 year
Metonic cycle always contains exactly 235 calendar months.

Example—The year AM 5779 began in September AD 2018, 5778 years after the firstmolad.
5778 divided by 19 is 304, with a remainder of 2, so from the firstmolad to the Tishreimolad
for AM 5779, there were 304 completeMetonic cycles plus two extra years, which are both

41

Extended Legacy Format (ELF): Date, Age and Time Microformats

non-leap years, being years 1 and 2 in theMetonic cycle. This means 71 464 calendar months
elapsed between the first molad and the Tishrei molad for AM 5779. Adding 71 464 lots of
4:1:12:793 to 2:5:204 gives 301482:2:14:316. The number of weeks can be discarded as it is
irrelevant when determining the year length, leaving just 2:14:316. This says the Tushrei
molad for the year AM 5779 happened on aMonday, being the second day after the Sabbath,
at 08:17:33⅓, when converted to hours, minutes and seconds after midnight, rather than
hours and halakim after sunset.

Once the Tishreimolad is known, the length of the calendar year can be determine using the following
table. If the Tishrei molad is on or after the instant in the first column, and before the instant in the
second column, then the length of the calendar year can be found in one of the last four columns,
depending on the position of the year in theMetonic cycle as shown in the column headings.

Molad � Molad < 1, 4, 9, 12 or 15 7 or 18 2, 5, 10, 13 or 16 0, 3, 6, 8, 11, 14 or 17

0:00:000 0:18:000 355 355 355 385
0:18:000 1:09:204 353 353 353 383
1:09:204 1:20:491 355 355 355 383
1:20:491 2:15:589 355 355 355 385
2:15:589 2:18:000 354 354 355 385
2:18:000 3:18:000 354 354 354 384
3:18:000 4:11:695 354 354 354 383
4:11:695 5:09:204 354 354 354 385
5:09:204 5:18:000 355 355 355 385
5:18:000 6:00:408 353 353 353 383
6:00:408 6:09:204 355 353 353 383
6:09:204 6:20:491 355 355 355 383
6:20:491 7:00:000 355 355 355 385

Cheshvan has 29 calendar days except when the calendar year is 355 or 385 calendar days long, in
which case it has 30 calendar days. Kislev has 30 calendar days except when the calendar year is only
353 or 383 calendar days long, in which case it only has 29 calendar days.

Example—Theprevious example calculated the Tishreimolad for AM5779 to be at 2:14:316,
whichmeans the fourth row of the table applies. As 5779 divided by 19 is 304with a remain-
der of 2, the year AM 5779 is the second year in theMetonic cycle, so the fifth column, whose
heading includes “2”, gives the year length as 355 calendar days. Thatmeans both Cheshvan
and Kislev have 30 calendar days. “30 CSH 5779” and “30 KSL 5779” are therefore both
well-formed dates.

Note — This table is called the “Table of Four Gates”. Its complexities are the result of the
competing requirements that Yom Kippur does not fall on a day adjacent to the Sabbath
(i.e. that 10 Tishrei not fall on a Friday or Sunday); that the new moon represented by the
molad cannot be observed in daylight until it is six hours old and Tishrei cannot start until

42

Extended Legacy Format (ELF): Date, Age and Time Microformats

the new moon it deemed observable; that all months have 29 or 30 calendar days; and that
only Cheshvan and Kislev can vary in length.

A date which uses a calendar day number which is greater than the number of calendar days in the
specified year and month is not a well-formed date.

Editorial note—The TSC decided to include a detailed specification of the Hebrew calendar
in this standard rather than referencing a third party description largely because of the lack
of a good, accessible description of calendar presented in a way that would make it easy to
implement the calendar in ELF. Most sources describing the calendar do so in terms of the
postponement rules which makes it easier to understand why the calendar is as it is, but
does not make it straightforward to implement. It is hoped that by providing these details
here, vendors will be encouraged to provide full implementations of the calendar.

5 The elf:Time datatype

ELF uses the elf:Time datatype to represent times of day using the 24-hour clock in hours, minutes
and seconds, with these components separated by a colon (U+003A). The hours and minutes compo-
nents are REQUIRED, and the seconds component SHOULDbe provided. A fractional seconds component
MAY be provided.

Example — The value “15:30:00” is a valid time of day, represented using the elf:Time
datatype. It represents half past three in the afternoon.

The elf:Time datatype is typically used in conjunction with a value of type elf:DateExact called
its associated date.

Note— The elf:DateExact datatype is limited to expressing dates in the Gregorian calen-
dar, so the associated date will always be a Gregorian date.

Example — In [ELF Data Model], times of day are found as TIME substructures of a DATE
element which has a payload of datatype elf:DateExact.

2 DATE 10 DEC 2018
3 TIME 13:52:00

In this example, “10 DEC 2018” is the associated date for the time “13:52:00”.

The lexical space of the elf:Time datatype is the set of stringswhichmatch the following Timeproduc-
tion, as well as the other constraints given here on the numerical value of each component. Whites-
pace is not permitted anywhere in an elf:Time value.

Time ::= HH ":" MM (":" SS)? TZD?

HH ::= [0-9] [0-9]
MM ::= [0-9] [0-9]

43

Extended Legacy Format (ELF): Date, Age and Time Microformats

SS ::= [0-9] [0-9] ("." [0-9]+)?
TZD ::= "Z" | ("+" | "-") HH ":" MM

The HH production encodes the hours component of the time of day, zero-padded to two digits. It SHALL
be a decimal integer between 00 and 24, inclusive. Values outside this range are outside the lexical
space of elf:Time. The hours component SHALL only be 24 if the minutes and seconds components
are both zero or absent; any other uses of 24 as an hours component is outside the lexical space of
the datatype.

Example — The strings “30:00” and “24:30” are both outside the lexical space of this
datatype. The former is invalid because the hours component of 30 is not between 00 to
24; the latter is invalid because it has an hours component of 24 and a non-zero minutes
component.

The string “24:00:00” is the end-of-day instant and denote the final instant of a calendar day. It
is the same instant as the first instant of the following calendar day (which is denoted 00:00:00).
Conformant applications MUST accept end-of-day instants as valid input but MUST NOT create new in-
stances of them. A conformant application MAY convert an end-of-day instant to 00:00:00, but only
if it has an associated date and that is simultaneously incremented by one day.

Example— A time of day of “24:00:00” with an associated date of “30 NOV 2018” MAY be
converted to a time of day of “00:00:00” with an associated date of “1 DEC 2018”.

Note— [GEDCOM 5.5.1] does not specify whether or not the end-of-day instant is legal, and
existing applications are unlikely to produce it. It is supported by elf:Time for compatibil-
ity with [ISO 8601] and the xsd:time datatype defined in [XSD Pt2].

The MM production encodes the minutes component of the time of day, zero-padded to two digits. It
SHALL be a decimal integer between 00 and 59, inclusive. Values outside this range are outside the
lexical space of elf:Time.

The SS production encodes the seconds component of the time of day, zero-padded to two digits and
followed by an OPTIONAL fractional component. It SHALL be a decimal greater than or equal to 00 and
strictly less than 61. Values outside this range are outside the lexical space of elf:Time.

Applications MUST preserve at least the first three decimal digits of a fractional seconds component,
but MAY truncate or round the fractional part of the seconds component beyond that. Applications
MAY add or remove trailing zeros on the frational part of the seconds component, and SHOULD add a
seconds component of :00 if none was given.

Note — These provisions allows applications to process times of day using the standard
data structures and facilities provided in many program languages, without preserving the
original lexical form of the time of day.

44

Extended Legacy Format (ELF): Date, Age and Time Microformats

Note—A future version of this standard is likely to make the seconds component REQUIRED
to make this datatype fully compatible with the xsd:time datatype defined in [XSD Pt2].

A seconds component greater than or equal to 60, and strictly less than 61 is called a leap second
component. Any use of a leap second component is part of the lexical space of elf:Time, but applica-
tions SHALL only create new leap second to represent leap seconds inserted by the International Earth
Rotation Service or its successor.

Conformant applications encountering a leap seconds component MAY convert it to an ordinary sec-
onds component by subtracting one from its value. This SHOULD NOT be done if the application sup-
ports leap seconds and knows the specified time of day was a leap second.

Example—The string “12:56:60.800” is in the lexical space of this datatype and has a leap
second component of 60.800. As leap seconds are always inserted at midnight UTC and
there is no timezone in which this time of day is midnight UTC, this time of day could not
arise in practice and therefore conformant applications MUST NOT generate such a time of
day. Conformant applications MUST accept such times of day but MAY subtract one second
to convert it to “12:56:59.800”.

Note — [GEDCOM 5.5.1] makes no mention of leap seconds, but existing applications are
likely to generate such times of day if they happen to save a file during the inserted leap
second. Leap seconds are also supported by [ISO 8601], but not in the xsd:time datatype
defined in [XSD Pt2]. These rules allow compatibilitywith these standards andwith existing
use, while also allowing applications to ignore the leap second.

The lexical space of the elf:Time datatype allows the inclusion of a time zone designatormatching
the TZD production. Conformant applications MUST accept time zone designators on dates in input,
but SHOULD ignore them and MAY remove them. Conformant applications MUST NOT include time
zone designators on newly generated times of day.

Note— Syntactic support for time zone designators is an extention to [GEDCOM 5.5.1], and
is included in ELF for forwards compatibility. This standard does not specify the meaning
conveyed by a time zone designator, but the syntax used is compatible with [ISO 8601] and
the xsd:time datatype defined in [XSD Pt2], and a future version of this standard is likely
to define it by reference to the latter standard. Application choosing not to ignore time zone
designators are encouraged to follow [XSD Pt2].

Formally, the elf:Time datatype is a structured non-language-tagged datatype which has the follow-
ing properties:

Datatype definition

Name https://terms.fhiso.org/elf/Time
Type http://www.w3.org/2000/01/rdf-schema#Datatype
Pattern (([01][0-9]|2[0-3]):[0-5][0-9](:([0-5][0-9]|60)(\.[0-9]+)?)?

|24:00:00(\.0+)?)(Z|(\+|-)([01][0-9]|2[0-3]):[0-5][0-9])?

45

Extended Legacy Format (ELF): Date, Age and Time Microformats

Datatype definition

Supertype No non-trivial supertypes
Abstract false

Note — The pattern in the table above has been split on to two lines for convenience of
presentation; it is, however, really one pattern and contains no whitespace or line breaks.
really one single line. Any functional difference between the Time production and the pat-
tern specified above is unintentional.

6 The elf:Age datatype

The age of a living individual is defined as the duration which has elapsed since the instant of their
birth.

Note— It is normal to stop counting age at the instant of an individual’s death, therefore an
age given for a posthumous event such as a burial is likely to be the age of the person when
they died, i.e. the duration of the time interval from birth to death, rather than from birth
to burial.

The elf:Age datatype is used to represent ages in ELF, which it does by recording number of calendar
years, calendar months and calendar days to have elapsed during the duration.

The lexical space of this datatype is the set of strings which match the following Age production:

Age ::= ([<>] S?)? (Duration | BareYear) | AgeWord

Duration ::= [0-9]+ "y" (S? [0-9]+ "m")? (S? [0-9]+ "d")?
| [0-9]+ "m" (S? [0-9]+ "d")? | [0-9]+ "d"

BareYear ::= [0-9]+
AgeWord ::= "CHILD" | "INFANT" | "STILLBORN"

Note — These productions are case-sensitive, so the string “17y” matches the Duration
production, while “17Y” does not.

Note — Because the elf:Age datatype is currently only used in ELF in contexts where
whitespace normalisation has been carried out, the S production will only ever match ex-
actly one space character.

A conformant application serialising an age using this datatype SHOULD use a single space character
(U+0020) wherever whitespace is permitted in the Age production.

Note — [GEDCOM 5.5.1] under-specifies how whitespace is allowed in ages. The Age pro-
duction is permissive in its treatment of whitespace, including allowing it to be omitted
entirely. The preceding recommendation is intended to make conformant ELF applications

46

Extended Legacy Format (ELF): Date, Age and Time Microformats

maximally compliant with current GEDCOM implementations which typically use a single
space character.

An age which uses the elf:Age datatype SHALL either consist of a quantitative duration conforming
to the Duration or BareYear productions, or an qualitative age keyword conforming to the AgeWord
production.

When an age is a quantitative duration matching the Duration production, it SHALL contain one,
two or three integers, each followed by a “y”, “m” or “d” suffix to denote a number of calendar years,
calendar months or calendar days, respectively, the sum of which is the age.

Example— The age “15y 2m” represents a duration of 15 years and 2 months.

If there is only a number of calendar years present, the BareYear production allows the “y” suffix to
be omitted, though this is NOT RECOMMENDED.

Example— The age “42y” only specifies a number of calendar years and so can be written
“42” without the “y” suffix. The age “15y 2m” MUST NOT be written “15 2m” as this duration
includes both a number of calendar years and calendar months.

Note — Allowing the “y” suffix to be omitted as shown in the Duration production is a
change from [GEDCOM 5.5.1] where it was REQUIRED. This has been relaxed because GED-
COM files fairly commonly contain lines like the following, despite them being illegal:

2 AGE 58

An agewhich is written including a (possibly zero) number of calendar daysMAY be presumed to have
a precision of a few calendar days; an agewhich includes a (possibly zero) number of calendarmonths,
but no explicit number of calendar days, MAY be presumed to have a precision of a few calendar
months; an age containing only a number of calendar years MAY be presumed to have a precision of
a few calendar years.

Example — The age “40y” MAY be assumed to have a precision of a few years. The actual
precisionwill depend on context. In many situations the precisionwill be exactly one year,
and so assuming the age has been given correctly, the individual was born at least 40 years
ago but not as long as 41 years ago.

At other times, a lower precision may apply. For example, on the 1841 census of Britain,
adults were asked to round their age down to the previous multiple of five years. In such
a context, an age of “40y” means the individual was born at least 40 years ago but not as
long as 45 years ago. As ELF does not provide a means of stating a range of years in an age,
nor of explicitly stating the precision, an age recorded as “40” on the 1841 census SHOULD
be encoded in ELF as “40y”.

The precise meaning of an age which is quantitative duration is dependent on context, cultural con-
siderations and the calendar in use.

47

Extended Legacy Format (ELF): Date, Age and Time Microformats

Example — The previous example gave an example of how the interpretation of “40y” de-
pended on context, due to different precisions.

Example—An elderly person reckoning their age using the Islamic calendar could consider
their age in years to be several years greater than if they were reckoning their age using the
Gregorian calendar because the Islamic calendar year is around 11 calendar days shorter
than the Gregorian calendar year. ELF does not provide a means of specifying which calen-
dar was used when recording an age.

Note — A future version of ELF may add facilities to specify which calendar is being used
for ages and also to allow an explicit precision to be stated, for example to say that an age
has been given within a five-year age bracket.

Ages SHOULD generally be rounded down when expressed using just a number of calendar years, or
using a number calendar years and calendar months, but an application SHOULD NOT assume this is
necessarily the case without additional information or context.

Example—Inmany parts of East Asia, ages are rounded up rather than down, so a newborn
infant is considered to be one year old, and becomes two years old on the first anniversary
of their birth.

A conformant application MAY remove any leading zeros preceding a non-zero digit, change how
whitespace is used in an age, or append any omitted “y” suffix, but MUST NOT otherwise alter the age.
In particular, applications MUST NOT insert or remove zero components, except as allowed below, nor
convert between days, months and years.

Example— “2y 0m”, “2y” and “24m” are all distinct ages and applications MUST NOT rewrite
one to another. However a conformant application MAY convert “2” to “2y”, adding the “y”
suffix; MAY convert “02y” to “2y”, removing leading zero; and MAY convert “2y0m” to “2y
0m”, a simple change in whitespace.

In addition, a conformant application MAY insert or remove components which are the number zero
followed by “y”, “m” or “d” suffix, providing doing so does not alter the presumed precision of the age.

48

Extended Legacy Format (ELF): Date, Age and Time Microformats

Example — The ages “2y 0m” and “2y” are presumed to have different precisions: the for-
mer has a precision of a fewmonths, while the latter has a precision of a few years. Convert-
ing one to the other by inserting or removing a “0m” component would change the precision
of the age, and of this reason a conformant application MUST NOT do it.

However it is only the least significant component present (representing the smallest unit
of duration) which affects the precision, and other zero components MAY be inserted or re-
moved. For example, “2m” and “0y 2m” are equivalent in ELF, and applications MAY convert
either one to the other.

Ageswhich are quantitative durationsMAY be prefixedwith with a “<” or a “>”. These are interpreted
as meaning the individual is at most the specified age, or is at least the specified age, respectively.

Note — This means the “<” and “>” token are actually interpreted as � and � operators,
though in practice the precision of ages in ELF is such that difference between � and <, or
between � and > does not matter.

In commonusage, a personmay be said to over 21 as soon as they’ve had their 21st birthday,
at which point they would normally round their age down to 21. ELF allows for this usage,
and “> 21y” may be used to refer to someone whose age is exactly 21. This may seem to be
a deviation from [GEDCOM 5.5.1] which defines them as meaning less than or greater than
the specified age, respectively, but because of the uncertainty in the intended precision of
an age, there is little practical difference. The case for interpreting “<” as less than or equal
to is weaker, but there are examples in current GEDCOM files where “<” has been used on
ages inferred from an age given a few months later.

Example— If a source gives an individual’s age as 52 in March, their agemight be inferred
to be “< 52y” the preceding January. In practice, they might be 51 or 52, assuming the
source is accurate. However, it is normally best not to infer ages and only to record ages
when they are given in sources.

Instead of a quantitative duration, an age MAY be expressed qualitatively using an age word which
matches the AgeWord production. This standard defines three age words: CHILD, INFANT and
STILLBORN. These SHOULD be used when a source describes an individual as a child, an infant, or
stillborn, respectively, or using other words which are broadly equivalent. They SHOULD NOT be used
when a source describes an individual using a quantitative age.

Note — The words “child”, “infant” and “stillborn” can be considered societal roles which
are to some extent culturally dependent, rather than well-defined age brackets. A modern
sourcemight describe a 15-year-old as a child, while inmediæval times, a person of this age
would be working and unlikely to be described as a child. This standard does not therefore
put firm limits on the agesmeant by these terms. This is a deviation from [GEDCOM 5.5.1]
which states that a child is less than 8 years old, an infant is less than 1 year old, and a
stillborn individual is approximately 0 days old. Nevertheless, these ages may be useful in

49

Extended Legacy Format (ELF): Date, Age and Time Microformats

deciding whether a foreign word or phrase can reasonably be translated as one of these
word.

The age word STILLBORN is not only a statement of age but also conveys the fact that the individual
died just prior to, at, or immediately after the time of birth. This age word MUST NOT be used to refer
to infants whose age is about 0 days unless they died around the time of birth.

Editorial note—Having exactly three age words seems unsatisfactory as it fails to copewith
other descriptions that might occur in a source, such as “elderly”. The TSC have discussed
whether age words should be deprecated, or whether they should be developed into amore
general and extensible age wordmechanism, but have reached no conclusion so far.

Formally, the elf:Age datatype is a structured non-language-tagged datatypewhich has the following
properties:

Datatype definition

Name https://terms.fhiso.org/elf/Age
Type http://www.w3.org/2000/01/rdf-schema#Datatype
Pattern ([<>][\t\r\n]*)?([0-9]+|[0-9]+y([\t\r\n]*[0-9]+m)?

([\t\r\n]*[0-9]+d)?|[0-9]+m([\t\r\n]*[0-9]+d)?|[0-9]+d)
|CHILD|INFANT|STILLBORN

Supertype No non-trivial supertypes
Abstract false

Note — The pattern in the table above has been split on to three lines for convenience of
presentation; it is, however, really one pattern and contains no whitespace or line breaks.
Any functional difference between the Age production and the pattern specified above is
unintentional.

Editorial note — Depending on the details of how the ELF data model is specified, it may
make sense to split this into two datatypes: the elf:Age datatypewhichwould be restricted
to just quantitative ages and would therefore serve as a general duration datatype, and a
separate elf:AgeWord datatype. The various ELF structures having an elf:Age payload
would then be changed to have payloads which were a union of datatypes. This introduces
several technical complications, including the need make datatype correction work with
multiple default datatypes. In principle this works fine when the default datatypes have
disjoint lexical spaces, as they would here, but it would need careful specification.

50

Extended Legacy Format (ELF): Date, Age and Time Microformats

7 References

7.1 Normative references

[Basic Concepts]
FHISO (Family History Information Standards Organisation). Basic Concepts for Genealogical
Standards. First public draft. (See https://fhiso.org/TR/basic-concepts.)

[RFC 2119]
IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Re-
quirement Levels. Scott Bradner, 1997. (See http://tools.ietf.org/html/rfc2119.)

[XML]
W3C (World Wide Web Consortium). Extensible Markup Language (XML) 1.1, 2nd edition. Tim
Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, and John Cowan eds.,
2006. W3C Recommendation. (See https://www.w3.org/TR/xml11/.)

7.2 Other references

[ELF Data Model]
FHISO (Family History Information Standards Organisation). Extended Legacy Format (ELF):
Data Model. Exploratory draft.

[ELF Serialisation]
FHISO (Family History Information Standards Organisation). Extended Legacy Format (ELF):
Serialisation Format. Exploratory draft.

[GEDCOM 5.3]
The Church of Jesus Christ of Latter-day Saints. The GEDCOM Standard, draft release 5.3. 4 Nov
1993.

[GEDCOM 5.5]
The Church of Jesus Christ of Latter-day Saints. The GEDCOM Standard, release 5.5. 2 Jan 1996,
as amended by the errata sheet dated 10 Jan 1996.

[GEDCOM 5.5.1]
The Church of Jesus Christ of Latter-day Saints. The GEDCOM Standard, draft release 5.5.1. 2
Oct 1999.

[GEDCOM X Dates]
Intellectual Reserve Inc. The GEDCOM X Date Format. Stable draft, accessed December 2018.
(See http://gedcomx.org/.)

[ISO 8601]
ISO (International Organization for Standardization). ISO 8601:2004. Data elements and inter-
change formats — Information interchange — Representation of dates and times. 2004.

[ISO 8601-2]
ISO (International Organization for Standardization). ISO 8601-2:2009. Data elements and in-
terchange formats — Information interchange — Part 2: Extensions. Draft, 15 Feb 2016.

51

https://fhiso.org/TR/basic-concepts
http://tools.ietf.org/html/rfc2119
https://www.w3.org/TR/xml11/
http://gedcomx.org/

Extended Legacy Format (ELF): Date, Age and Time Microformats

[FHISO Patterns]
FHISO (Family History Information Standards Organisation). The Pattern Datatype. First pub-
lic draft. (See https://fhiso.org/TR/patterns.)

[Roman Dates]
Chris Bennett. “Roman Dates.” Website, accessed October 2019. (See http://www.
instonebrewer.com/TyndaleSites/Egypt/ptolemies/chron/chronology.htm.) Last updated
2012.

[XSD Pt2]
W3C (World Wide Web Consortium). W3C XML Schema Definition Language (XSD)
1.1 Part 2: Datatypes. David Peterson, Shudi Gao (高 殊 镝), Ashok Malhotra, C. M.
Sperberg-McQueen and Henry S. Thompson, ed., 2012. W3C Recommendation. (See
https://www.w3.org/TR/xmlschema11-2/.)

[Triples Discovery]
FHISO (Family History Information Standards Organisation). Simple Triples Discovery Mecha-
nism. First public draft. (See https://fhiso.org/TR/triples-discovery.)

Copyright © 2018–19, Family History Information Standards Organisation, Inc. The text of this stan-
dard is available under the Creative Commons Attribution 4.0 International License.

52

https://fhiso.org/TR/patterns
http://www.instonebrewer.com/TyndaleSites/Egypt/ptolemies/chron/chronology.htm
http://www.instonebrewer.com/TyndaleSites/Egypt/ptolemies/chron/chronology.htm
https://www.w3.org/TR/xmlschema11-2/
https://fhiso.org/TR/triples-discovery
https://fhiso.org/
https://creativecommons.org/licenses/by/4.0/

	Conventions used
	General concepts
	Time
	Calendars
	Uncertainty
	Date concepts in other formats

	Date formats
	Generic date syntax
	Calendar escapes
	Days
	Months
	Years
	Epochs

	Date modifiers
	Approximated dates
	Date phrases and interpreted dates
	Date ranges

	The elf:DateValue datatype
	The elf:DatePeriod datatype

	Calendar definitions
	The Gregorian calendar
	The elf:DateExact datatype

	The Julian calendar
	The French Republican calendar
	The Hebrew calendar

	The elf:Time datatype
	The elf:Age datatype
	References
	Normative references
	Other references

