fhiso’

Basic Concepts for Genealogical Standards

16 March 2018

Editorial note — This is a first public draft of a standard covering basic concepts that are
expected to be used in multiple FHISO standards. This document is not endorsed by the
FHISO membership, and may be updated, replaced or obsoleted by other documents at any
time.

The public tsc-public@fhiso.org mailing list is the preferred place for comments, discussion
and other feedback on this draft.

Latest public version: https://fhiso.org/TR/basic-concepts
This version: https://fhiso.org/TR/basic-concepts-20180316

FHISO’s Basic Concepts for Genealogical Standards standard defines various low-level concepts
that will be used in many FHISO standards, and whose definitions do not logically belong in any one
particular higher-level standard.

The definition of a string which is used in multiple FHISO standards is given in §2 of this standard,
together with various related concepts such as characters and whitespace, and §3 defines briefly how
FHISO standards use language tags. Terms are defined in §4 as a form of extensible identifier using
IRIs, and §4.1 discusses information that may be retrieved from these IRIs. The notion of a datatype
is defined in §6, which also includes details on how to specify a new datatype.

The concepts of a classes and properties are defined in §5. They provide an infrastructure for defining
extensions to FHISO standards and new, compatible standards in such a way that applications can
use a discovery mechanism to find out about unknown components, allowing them to be processed.
The facilities in these sections will primarily be of use to parties defining extensions or implementing
discovery.

1 Conventions used

Where this standard gives a specific technical meaning to a word or phrase, that word or phrase is
formatted in bold text in its initial definition, and in italics when used elsewhere. The key words MusT,
MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED,
MAY and OPTIONAL in this standard are to be interpreted as described in [RFC 2119].

An application is conformant with this standard if and only if it obeys all the requirements and
prohibitions contained in this document, as indicated by use of the words MUST, MUST NOT, REQUIRED,
SHALL and SHALL NOT, and the relevant parts of its normative references. Standards referencing this
standard musT NOT loosen any of the requirements and prohibitions made by this standard, nor place
additional requirements or prohibitions on the constructs defined herein.

https://tech.fhiso.org/tsc-public
https://tools.ietf.org/html/rfc2119

Basic Concepts for Genealogical Standards

Note — Derived standards are not allowed to add or remove requirements or prohibitions
on the facilities defined herein so as to preserve interoperability between applications. Data
generated by one conformant application must always be acceptable to another conformant
application, regardless of what additional standards each may conform to.

If a conformant application encounters data that does not conform to this standard, it MAY issue a
warning or error message, and MAY terminate processing of the document or data fragment.

Indented text in grey or coloured boxes does not form a normative part of this standard, and is la-
belled as either an example or a note.

Editorial note — Editorial notes, such as this, are used to record outstanding issues, or points
where there is not yet consensus; they will be resolved and removed for the final standard.
Examples and notes will be retained in the standard.

The grammar given here uses the form of EBNF notation defined in §6 of [XML], except that no sig-
nificance is attached to the capitalisation of grammar symbols. Conforming applications MUST NOT
generate data not conforming to the syntax given here, but non-conforming syntax MAy be accepted
and processed by a conforming application in an implementation-defined manner.

This standard uses prefix notation, as defined in §4.3 of this standard, when discussing specific terms.
The following prefix bindings are assumed in this standard:

rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.0rg/2000/01/rdf-schema#

xsd http://www.w3.0rg/2001/XMLSchema#

types https://terms.fhiso.org/types/

Note — The particular prefix assigned above have no relevance outside this standard docu-
ment as prefix notation is not used in the formal data model defined by this standard. This
notation is simply a notational convenience to make the standard easier to read.

2 Characters and strings

Editorial note — The concepts related to strings were originally defined in the CEV Concepts
draft. This section has been moved here to be more generally usable.

Characters are specified by reference to their code point number in [ISO 10646], without regard to
any particular character encoding. In this standard, characters may be identified in this standard by
their hexadecimal code point prefixed with “U+”.

https://www.w3.org/TR/xml11/
https://tech.fhiso.org/TR/cev-concepts

Basic Concepts for Genealogical Standards

Note — The character encoding is a property of the serialisation, and not defined in this
standard. Non-Unicode encodings are not precluded, so long as it is defined how characters
in that encoding corresponds to Unicode characters.

Characters musT match the Char production from [XML].

Char ::= [#1-#xD7FF] | [#xXE000-#xFFFD] | [#x10000-#x10FFFF]

Note — This includes all code points except the null character, surrogates (which are re-
served for encodings such as UTF-16 and not characters in their own right), and the invalid
characters U+FFFE and U+FFFF.

A string is a sequence of zero or more characters, and sHOULD only be used to encode textual data.

Note— This definition of a string is identical to the definition of the string datatype defined
in [XSD Pt2], used in many XML and Semantic Web technologies.

This definition of a string differs very slightly from JSON’s definition of a string, as defined
in [RFC 7159], as a JSON string may include the null character (U+0000). This is the only
difference between a JSON string and FHISO’s definition of a string. As a string SHOULD NOT
be used to contain raw binary data, this difference is not anticipated to cause a problem.
If an application needs to store binary data in string, it SHouLD encode it in a textual form,
for example with the Base64 data encoding scheme defined in [RFC 4648].

Applications MAY convert any string into Unicode Normalization Form C, as defined in any version of
Unicode Standard Annex #15 [UAX 15].

Note — Normalization Form C and Normalization Form D allow easier searching, sorting
and comparison of strings by picking a canonical representation of accented characters.
The conversion between Normalization Forms C and D is lossless and therefore reversible,
but the initial conversion to either form is not reversible. This allows a conformant appli-
cation to normalise strings internally and not retain the unnormalised form; however, an
application doing so MUST ensure the string is in Normalization Form C upon export, this
being the more usual form for use in documents.

Characters matching the RestrictedChar production from [XML] SHOULD NOT appear in strings,
and applications MAY process such characters in an implementation-defined manner or reject strings
containing them.

RestrictedChar ::= [#x1-#x8] | [#xB-#xC] | [#xXE-#x1F]
| [#x7F-#x84] | [#x86-#x9F]

Note — This includes all CO and C1 control characters except tab (U+0009), line feed
(U+000A), carriage return (U+000D) and next line (U+0085).

https://www.w3.org/TR/xml11/
https://www.w3.org/TR/xmlschema11-2/
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc4648
http://unicode.org/reports/tr15/
https://www.w3.org/TR/xml11/

Basic Concepts for Genealogical Standards

Example — As conformant applications can process Cl control characters in an
implementation-defined manner, they can opt to handle Windows-1252 quotation marks
in data masquerading as Unicode. Applications MUST NOT treat non-ASCII characters (other
than C1 control characters) as ANSEL, the character set properly used in [GEDCOM], as
[ANSEL]’s non-ASCII characters do not correspond to RestrictedChars.

Conformant applications MUST be able to store and process strings containing arbitrary characters
other than those matching the RestrictedChar. In particular, applications MmusT be able to handle
characters which correspond to unassigned Unicode code points as they may be assigned in future
versions of [ISO 10646]. Applications MusT also be able to handle characters outside Unicode’s Basic
Multilingual Plane — that is, characters with a code point of U+10000 or higher.

Note—This means applications MUST NOT represent strings internally in the UCS-2 encoding
which does not accommodate characters outside the Basic Multilingual Plane. The UTF-
16 encoding defined in §2.6 of [ISO 10646] provides a 16-bit encoding that is backwards
compatible with UCS-2 but allows arbitrary characters to be represented through the use of
Unicode surrogate pairs.

Whitespace is defined as a sequence of one or more space characters, carriage returns, line feeds, or
tabs. It matches the production S from [XML].

S := (#x20 | #x9 | #xD | #xA)+

Note — This definition only includes common ASCII whitespace characters and does not
include every character in [ISO 10646] that could be considered to be a whitespace. For
example, the vertical tab (U+000B), no-break space (U+00A0) and em space (U+2003) are all
excluded.

Whitespace normalisation is the process of discarding any leading or trailing whitespace, and re-
placing other whitespace with a single space (U+0020) character.

Note — The definition of whitespace normalisation is identical to that in [XML].

In the event of a difference between the definitions of the Char, RestrictedChar and S productions
given here and those in [XML], the definitions in the latest edition of XML 1.1 specification are defini-
tive.

https://www.w3.org/TR/xml11/
https://www.w3.org/TR/xml11/
https://www.w3.org/TR/xml11/

Basic Concepts for Genealogical Standards

3 Language tags

I Editorial note — The material in this section is new in this draft.

A language tag is a string that is used to represent a human language, and where appropriate the
script and regional variant or dialect used. They are commonly used to tag other strings to identify
their language in a machine-readable manner.

The language tag sHALL match the Language-Tag production from [RFC 5646], or from any future
RFC published by the IEFT that obsoletes [RFC 5646] (hereinafter referred to as RFC 5646’s successor
RFC), and sHOULD be valid, as defined in §2.2.9 of [RFC 5646].

Valid language tags have the meaning that is assigned to them by [RFC 5646] and any successor RFC.
Applications may discard any language tag that is not well-formed and replace it with und, meaning
a undetermined language, but musT NoT discard any language tag that is well-formed even if it is not
valid.

Note — [RFC 5646] says that to be valid, a language tag musT consist of tags that have been
registered in the [TANA Lang Subtags] registry. This is freely available online in a machine-
readable form defined in §3.1.1 of [RFC 5646], and gives the meaning of every tag. Currently
it includes:

— two-letter language tags from [ISO 639-1];

— three-letter language tags from [ISO 639-2] (the “terminology” codes where they dif-
fer from the “bibliographic” codes), [ISO 639-3] and [ISO 639-5] for languages with
no two-letter code;

— four-letter script tags from [ISO 15924];

— two-letter country codes currently assigned in [ISO 3166-1], together with certain
formerly assigned or reserved codes;

— three-digit codes for supranational geographical areas and exceptionally countries
from [UN M.49]; and

— asmall number of legacy tags that have been grandfathered into the scheme.

The meanings of codes in the source ISO standards may change over time, but the procedure
set out in §3.4 of [RFC 5646] governing the addition of tags to [[ANA Lang Subtags] ensures
the meanings there stable. This particularly affects [ISO 3166-1] country codes which histor-
ically have been reused, and may result in a gradual divergence between and [IANA Lang
Subtags]. Applications sHouLD therefore avoid using [ISO 3166-1] codes that have not been
registered in [TANA Lang Subtags].

Example — A string tagged with the language tag hu-CS musT be interpreted by a confor-
mant application as being in the Hungarian language localised for use in the former state
of Serbia and Montenegro, because this is how hu and CS are listed in [TANA Lang Subtags].
The code CS is perhaps better known as representing the former state of Czechoslovakia

https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
http://www.iana.org/assignments/language-subtag-registry
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

Basic Concepts for Genealogical Standards

and appears in older lists of [ISO 3166-1] country codes as such, but neither IANA nor FHISO
recognise this former meaning.

This is one of five country codes whose meaning has materially changed in [ISO 3166-1],
the other four being AI, BQ, GE and SK. In each case, because the reuse occurred before
the creation of [TANA Lang Subtags], it is the current meaning that is listed in [IANA Lang
Subtags]. If there is further reuse of country codes in the future, [RFC 5646] requires that
the current meaning of the tag be retained and a numeric code be given to the new country
in [IANA Lang Subtags].

A conformant application may convert any language tag into its canonical form, as defined by §4.5 of
[RFC 5646] or an equivalent section of a successor RFC.

Note — The chief purpose of canonical form is to replace deprecated language codes and
other subtags with the value found in the Preferred-Value field in [TANA Lang Subtags].
It never result in the removal of script subtag, even when they are the default script for the
language as defined by a Suppress-Script field.

Example — The language tag iw is listed in [TANA Lang Subtags] as a deprecated language
code for Hebrew which has now been removed from [ISO 639-1]. Its Preferred-Value
field is he, so an application mAY replace iw with he.

A conformant application MAy alter a language tag in any other way that leaves its canonical form
unchanged when compared in a case-insensitive manner.

Note — Such changes are permitted for three reasons. First, it allows applications to revert
new tags to older deprecated forms when exporting data to an older application. Secondly,
it allows applications to remain conformant even if they are basing conversions on an out-
dated copy of the [IANA Lang Subtags] registry. This is because §3.4 of [RFC 5646] only
allows certain compatible changes to the registry. Thirdly, it allows applications to apply
the conventional capitalisation of language tags defined in §2.1.1 of [RFC 5646].

A string which is accompanied by a language tag which identifies the language in which the string is
written is called a language-tagged string.

Note — The language tag is not itself part of string, but is stored alongside it.

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry
https://tools.ietf.org/html/rfc5646
http://www.iana.org/assignments/language-subtag-registry
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc5646

Basic Concepts for Genealogical Standards

4 Terms

Editorial note — The concept of a term was originally defined in the CEV Concepts draft. It
has been moved here to be more generally usable.

A term is a form of identifier used in FHISO standards to represent a concept which it is useful to
be able to reference. A term consists of a unique, machine-readable identifier, known as the term
name, paired with a clearly-defined meaning for the concept or idea that it represents. Term names
sHALL take the form of an IRI matching the IRI production in §2.2 of [RFC 3987].

Example — This standard uses terms to name datatypes, as defined in §6 of this standard,
and also to name classes and properties, defined in §5.1 and §5.2. For example, §6.6.3 of this
standard defines a datatype for representing integers. This datatype is identified by a term
whose term name in prefix notation is xsd: integer. This is short for the following IRI:

http://www.w3.0rg/2001/XMLSchema#integer

Note — IRIs have been chosen in preference to URIs because it is recognised that certain
culture-specific genealogical concepts may not have English names, and in such cases the
human-legibility of IRIs is advantageous. URIs are a subset of IRIs, and all the terms defined
in this suite of standard are also URIs.

Term names are compared using the “simple string comparison” algorithm given in §5.3.1 of [RFC
3987]. If a term name does not compare equal to an IRI known to the application, the application
MuUsT NOT make any assumptions about the term, its meaning or intended use, based on the form of
the IRI or any similarity to other IRIs.

Note — This comparison is a simple character-by-character comparison, with no normali-
sation carried out on the IRIs prior to comparison. It is also how XML namespace names
are compared in [XML Names].

Example — The following IRIs are all distinct for the purpose of the “simple string compari-
son” algorithm given in §5.3.1 of [RFC 3987],, even though an HTTP request to them would
fetch the same resource.

https://éléments.example.com/nationalité
HTTPS://ELEMENTS.EXAMPLE .COM/nationalit%C3%A9
https://xn--1lments-9uab.example.com/nationalit%c3%a9

An IRI musT NOT be used as a term name unless it can be converted to a URI using the algorithm
specified in §3.1 of [RFC 3987], and back to a IRI again using the algorithm specified in §3.2 of [RFC
3987], to yield the original IRIL.

https://tech.fhiso.org/TR/cev-concepts
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://www.w3.org/TR/xml-names11/
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc3987

Basic Concepts for Genealogical Standards

Note — This requirement ensures that term names can be used in a context where a URI
is required, and that the original IRI can be regenerated, for example for comparison with
a list of known IRIs. The vast majority of IRIs, including those in non-Latin scripts, have
this property. The effect of this requirement is to prohibit the use of IRIs that are already
partly converted to a URI, for example through the use of unnecessary percent or punycode
encoding.

Example — Of the three IRIs given in the previous example on how to compare IRIs, only
the first may be used as a term name. The second and third are prohibited as a result of
the unnecessary percent-encoding, and the third is additionally prohibited as a result of
unnecessary punycode-encoding.

The terms defined in FHISO standards all have term names that begin https://terms.fhiso.org/.
Subject to the requirements in the applicable standards, third parties may also define additional
terms. It is RECOMMENDED that any such terms use either the http or preferably the https IRI scheme
defined in §2.7.1 and §2.7.2 of [RFC 7230] respectively, and an authority component consisting of just
a domain name or subdomain under the control of the party defining the term.

Note — An http or https IRI scheme is RECOMMENDED because the IRI is used to fetch
a resource during discovery, and it is desirable that applications implementing discovery
should only need to support a minimal number of transport protocols. URN schemes like the
uuid scheme of [RFC 4122] are NOT RECOMMENDED as they do not have transport protocols
that can be used during discovery.

The preference for a https IRI is because of security considerations during discovery. A
man-in-the-middle attack during discovery could insert malicious content into the response,
which, if undetected, could cause an application to process user data incorrectly, potentially
discarding parts of it or otherwise compromising its integrity. It is harder to stage a man-
in-the-middle attack over TLS, especially if public key pinning is used per [RFC 7469].

4.1 IRIresolution

It is RecoMMENDED that an HTTP GET request to a term name IRI with an http or https scheme
(once converted to a URI per §4.1 of [RFC 3987]), sHoULD result in a 303 “See Other” redirect to a
document containing a human-readable definition of the term if the request was made without an
Accept header or with an Accept header matching the format of the human-readable definition.
It is further REcoMmMENDED that this format should be HTML, and that documentation in alternative
formats MAY be made available via HTTP content negotiation when the request includes a suitable
Accept header, per §5.3.2 of [RFC 7231].

Note — A 303 redirect is considered best practice for [Linked Datal], so as to avoid confusing
the term name IRI with the document containing its definition, which is found at the post-

https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc7469
https://tools.ietf.org/html/rfc3987
http://linkeddatabook.com/editions/1.0/

Basic Concepts for Genealogical Standards

redirect URL. The terms defined in this suite of standards are not specifically designed for
use in Linked Data, but the same considerations apply.

Parties defining terms sHouLD arrange for their term name to support discovery. This when an HTTP
GET request to a term name IRI with an http or https scheme, made with an appropriate Accept
header, yields 303 redirect to a machine-readable definition of the term.

Note — This standard does not specify a specific version of HTTP, but at the current time,
even though HTTP/2 is becoming more popular, HTTP 1.1 is the most widely implemented
version of HTTP. While this remains true, applications and discovery servers are encour-
aged to support HTTP 1.1.

This standard does not define a discovery mechanism, but it is RECOMMENDED that parties defining
terms support FHISO’s [Triples Discovery] mechanism, and MAy additionally support other mecha-
nisms. Support for discovery by applications is OPTIONAL.

Example — Suppose an application wants to perform discovery on the hypothetical
https://example.com/events/Baptism term used in several later examples in this
standard. If the application supports FHISO’s [Triples Discovery] mechanism, which uses
[N-Triples] as its serialisation format, together with some other hypothetical discovery
mechanism using the application/x-discovery MIME type, but prefers to use [Triples
Discovery], it might make the following HTTP request:

GET /events/Baptism HTTP/1.1
Host: example.com
Accept: application/n-triples, application/x-discovery; g=0.9

In this example, the q=0.9 in the Accept header is a quality value which, per §5.3 of [RFC
7231], indicates that the x-discovery format is less preferred than n-triples which by
default has a quality value of 1.0.

If the server supports n-triples, it MusT respond with a 303 redirect:

HTTP/1.1 303 See Other
Location: https://example.com/events/Baptism.n3
Vary: Accept

In this case the redirect is to the original IRI but with .n3 appended, however the actual
choice of IRI is up to the party defining the term and running the example. com web server.
When a server’s response is dependent on the contents of an Accept header, §7.1.4 of [RFC
7231] says that this sHouLD be recorded in a Vary header, as it is in this example.

The application would normally then make a second HTTP request to follow the redirect:

GET /events/Baptism.n3 HTTP/1.1
Host: example.com
Accept: application/n-triples, application/x-discovery; q=0.9

Basic Concepts for Genealogical Standards

This request uses the same Accept header as the first, as HTTP redirects contain no informa-
tion about the MIME type of the destination resource, so at this point the application does
not know which discovery mechanism the server is using, or whether the server does not
support discovery or HTTP content negotiation and is serving a human-readable definition.

The server’s response to this request should be an N-Triples file containing information
about the Baptism term.

A party defining a term MAY support discovery without using HTTP content negotiation on their web
server by serving a machine-readable definition of the term unconditionally (which sHoUuLD be served
via a 303 redirect), however it is RECOMMENDED that such servers implement HTTP content negotia-
tion respecting the Accept header.

4.2 Namespaces
Editorial note— The definition of a namespace is based on material in FHISO’s Vocabularies

policy.

The namespace of a term is another term which identifies a collection of related terms defined by
the same party. The term name of the namespace is also referred to as its namespace name. The
namespace name of the namespace of some term is found as follows.

If the term name ends with a non-empty fragment identifier, then its namespace name is formed by
removing the fragment identifier, leaving an IRI ending with a #.

Example — [Basic Concepts] uses a datatype identified by the following term name IRIL:

http://www.w3.0rg/2001/XMLSchema#integer

This concludes with a fragment identifier, “integer”, and therefore its namespace name is
its term name with the fragment identifier removed:

http://www.w3.0rg/2001/XMLSchema#

Otherwise, if the term name ends with a non-empty path segment, then its namespace name is formed
by removing the path segment, leaving an IRI ending with a /.

Example — [Basic Concepts] defines a property identified by the following term name IRI:

https://terms.fhiso.org/types/pattern

This concludes with a path segment, “pattern”, and therefore its namespace name is its
term name with the path segment removed:

https://terms.fhiso.org/types/

Otherwise, the namespace is undefined.

10

https://tech.fhiso.org/policies/vocabularies
https://tech.fhiso.org/policies/vocabularies

Basic Concepts for Genealogical Standards

Note — This means the namespace of a namespace is necessarily undefined, as namespace
names always end with a # or /, meaning they end with either an empty fragment identifier
or an empty path segment.

4.3 Prefix notation

Term names are sometimes referred using prefix notation. This is a system whereby prefixes are
assigned to namespace names which occur frequently in term names. Then, instead of writing the
term name in full, the leading portion of the term name equal to the namespace name is replaced by
its prefix followed by a colon (U+003A) separator.

Example — The term name http://www.w3.0rg/2000/01/rdf-schema#Class is used in
several places in this standard. Instead of writing this in full, if the rdfs prefix is bound
to its namespace name http://www.w3.0rg/2000/01/rdf-schema#, then this IRI can be
written in prefix form as rdfs:Class.

5 Underlying type system

Editorial note — The material in this section is new in this draft, but draws heavily on
FHISO’s Vocabularies policy.

Note — This section defines a basic type system for terms and a simple vocabulary for de-
scribing them. This formalism provides a solid theoretical framework for defining exten-
sions to FHISO standards, and is used by applications during discovery (support for which
is opTIONAL). Parties who are simply implementing a higher level FHISO standards will
typically not need to be familiar with this material.

5.1 Classes
Terms are used in many contexts in FHISO standards and it can be useful to have a concise, machine-
readable way of stating the use for which it was defined.

A class is a term used to denote a particular context or use for which other terms may be defined.
Standards defining such contexts sHouLD define a class to represent that context, and musT do so if
the third parties are permitted to define their own terms for use in that context.

Example — A hypothetical standard might defined various terms representing events of
genealogical interest that might occur during a person’s lifetime. Examples might include:

https://example.com/events/Baptism
https://example.com/events/Ordination

11

https://tech.fhiso.org/policies/vocabularies

Basic Concepts for Genealogical Standards

https://example.com/events/Emigration
https://example.com/events/Death

The standard sHOULD provide a class to represent the abstract concept of an event type, and
as the class is itself a term, it must have an IRI as its term name. Perhaps it might be:

https://example.com/events/EventType

This class might be referred to as the class of event types.

Note — The words “class” and “type” are used in many contexts in computing. As used
here, a class is similar to a datatype of which terms are values, or a class of which terms are
instances, or a named enumeration type of which terms are values. FHISO’s use of this word
does not mean that the other notions associated with the word “class” in object-oriented
programming apply here.

The term name of a class is also referred to as its class name.

5.1.1 The type of a term

When a term has been defined for use in the context denoted by some class, that class is referred to
as the type of the term.

Example — In prefix notation, with the prefix exbound tohttps://example.com/events/,
the type of ex:Baptism from the previous example is ex:EventType.

The type of a term is a piece of information which musT be provided, perhaps implicitly, when defining
a term. As such, the type is a property of the term, as defined in §5.2, and needs a property term to
represent it. This standard uses the rdf: type term for this purpose:

Property definition

Name http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2000/01/rdf-schema#Class

Note — The table above sets out the formal properties of the rdf: type property. The first
line of this definition states the term name of the rdf: type property. As required above,
the type of a term musT be specified when a term is defined and the rdf: type property is no
exception. Its type is rdf : Property which is defined in §5.2 of this standard. The meaning
of the range is given in §5.2.1.

Note — The rdf:type property term is defined §3.3 of [RDF Schema], however imple-
menters may safely use this property term for the purposes of this standard without

12

Basic Concepts for Genealogical Standards

reading [RDF Schema]. The decision to use this RDF term in FHISO’s standards rather than
invent a new term allows for greater compatibility with existing third-party vocabularies.

5.1.2 The class of classes

As a class is a term, defining a class is itself a context in which terms are defined, including by third
parties. This means the general concept of a class needs a term defining to represent it. This standard
uses the rdfs:Class term for this purpose:

Class definition

Name http://www.w3.0rg/2000/01/rdf-schema#Class

Type http://www.w3.0rg/2000/01/rdf-schema#Class
Superclass http://www.w3.0rg/2000/01/rdf-schema#Resource
Required properties http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

Note — This can be thought of as a class of classes. It is not merely an arcane abstraction:
it serves a useful role in discovery. If discovery is carried out on the term name of a class, it
is useful to be able to indicate that the term is a class. This can be done by saying the type
of the termis rdfs:Class.

Note — Although the rdfs:Class class is defined in §2.2 of [RDF Schemal], this standard
does not require support for any of the facilities in [RDF Schemal], nor are parties defining
classes or terms required to do so in a manner compatible with RDF. An implementer may
safely use the rdfs:Class class for the purposes of this standard using just the information
given in this section without reading [RDF Schema] or otherwise being familiar with RDF.

The decision to use rdfs:Class and other terms from [RDF Schema] is due to FHISO’s prac-
tice of reusing facilities from existing standards when they are a good match for our require-
ments, rather than inventing our own versions with similar functionality. It also allows
future standards and vendor extensions the option of reusing existing third-party vocabu-
laries where appropriate, as most such vocabularies are also aligned with RDF.

The type of any class is therefore rdfs:Class.

Note — There is no need for a further level of abstraction to represent the type of
rdfs:Class. As rdfs:Class is just another class, albeit a fairly special one, the type of
rdfs:Classisrdfs:Class.

13

Basic Concepts for Genealogical Standards

5.1.3 Subclasses

A class may be defined as a subclass of another class. The latter class is referred to as the superclass
of the former class. The subclass denotes a more specialised version of the context denoted by its
superclass. A term whose type is subclass of some other class maY be used wherever a term is required
whose type is the superclass.

Example — In the example above, a hypothetical standard was said to have defined a class
representing event types. The same hypothetical standard might define a subclass of this
called IndividualEventType to represent individual events for those events that are prin-
cipally about a single person. In such a scheme, a baptism would be considered an individ-
ual event, while a marriage would probably not as it involves two principal participants.
In a context where a term of type EventType is required, an IndividualEventType like
BaptismwMmaAy be used; butin a context where an IndividualEventType isrequired, others
sorts of event such as Marriage MusT NOT be used.

The superclass of a class MmusT be specified when defining a class to be the subclass of some other
class. As such, the superclass of the class is a property of the class, as defined in §5.2 and needs a
property term to represent it. This standard uses the rdfs:subClassOf term for this purpose:

Property definition

Name http://www.w3.0rg/2000/01/rdf-schema#subClassOf
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2000/01/rdf-schema#Class

Note — The rdfs:subClassOf property term is defined §3.4 of [RDF Schema], however
implementers may safely use this property term for the purposes of this standard without
reading [RDF Schema]. The decision to use this RDF term in FHISO’s standards rather than
invent a new term allows for greater compatibility with existing third-party vocabularies.

The notion of a subclass is transitive, meaning that if a class is a subclass of a second class, and that
second class is a subclass of a third class, then the first class is a subclass of the third. The notion of
a subclass is also reflexive, meaning that a class is by definition a subclass of itself. The notion of a
superclass is similarly transitive and reflexive.

The rdfs:subClassOf property is defined as a required property of rdfs:Class, meaning its super-
types MusT be specified whenever a new class is defined. However this standard does not require
every superclass to be identified explicitly. If a class has two or more superclasses, and one of the
superclasses is itself a superclass of another of the superclasses, then the superclass of the superclass
need not be identified explicitly.

Example — Continuing the previous example, it is correct to say that the hypothetical In-
dividualEventType class is a superclass of EventType, but it is equally correct to say that
it is a superclass of the rdfs:Resource universal superclass defined in §5.1.4, below. The

14

Basic Concepts for Genealogical Standards

IndividualEventType class therefore has two superclasses, one of which (EventType) is
a superclass of the other (rdfs:Resource). Because of this, it is not necessary to state that
IndividualEventType is a subclass of rdfs:Resource.

5.1.4 The universal superclass

This standard uses rdfs:Resource as the universal superclass defined to be the superclass of all
classes.

Class definition

Name http://www.w3.0rg/2000/01/rdf-schema#Resource
Type http://www.w3.0rg/2000/01/rdf-schema#Class
Required properties http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

Note — The rdfs:Resource class is defined in §2.1 of [RDF Schemal].

This class has no semantics of its own, other than to be class of all things that can be expressed in this
data model.

Note—The rdfs:Resource classis useful with the rdfs : subClassOf property when defin-
ing a class which has no other superclass.

5.2 Properties

During discovery, and in other situations when a formal definition of a particular term is needed, it
is necessary to have a formalism for providing information about that term.

A property is a particular piece of information that might be provided when defining some entity.
The thing being defined is typically a term, and is called the subject of the property.

Editorial note — The subject of the property is only said to be typically a term so that citation
elements terms (in [CEV Concepts]) can be made a subclass of property terms. The subject
of a citation element is a source which is not a term as we don’t require them to be iden-
tified by an IRI. It is likely that other genealogical concepts, possibly including individual
attributes in ELF, may also be treated as properties whose subjects are not terms. In the case
of individual attributes, the subject is an individual which is likely not identified by an IRI.

The property consists of two parts, both of which are REQUIRED to be present:

— a property name, which identifies the nature of the information in the property; and
— a property value, which contains the data about the subject of the property.

The property name sHALL be a term that has been defined to be used as a property name in the manner
required by this standard; a term defined for this purpose is called a property term.

15

Basic Concepts for Genealogical Standards

Note — This nomenclature draws a distinction between a property name and a property
term. The former is part of a property, and is therefore part of the description of the subject
of the property, while the latter is an item of vocabulary reference by that description. The

property name is a property term.

The property value sHALL be a term, a string, or a language-tagged string. The property value may
additionally be tagged with a datatype name, which is a term name defined in §6.

Editorial note — The ability to tag property values with a datatype is not currently used in
this standard, but is required so that citation elements, as defined in [CEV Concepts], can be

a subclass of properties. More work is needed to fully harmonise these concepts, and it may
become necessary to pull the notion of a localisation set down into Basic Concepts.

Properties SHALL NOT have default property values that applies when the property is absent, however
standards MAY define how an conformant application handles the absence of a property.

Standards which introduce such pieces of information sHouLD define a property terms to represent
them, and MmusT do so if third parties are permitted to define their own terms and if it is RECOMMENDED

or REQUIRED that these third parties document or otherwise make available the information repre-

sented by the property.

Example — An earlier example introduced several hypothetical terms for events of genealog-

ical interest, such as birth, baptism, ordination, emigration and death. Many events can
occur multiple times during a person’s life: for example, a person might emigrate more
than once. But other events cannot by definition occur more than once: birth and death
are obvious examples. The number of times something is permitted to occur is sometimes
called its cardinality, and if the authors of this hypothetical standard considered it a rele-
vant concept, they sHouLD define a property term to represent the concept of cardinality:

https://example.com/events/cardinality

If the hypothetical standard allows third parties to define additional types of event, and
either recommends or requires that they state the cardinality of the new events, then the
standard musT define a property term representing cardinality.

The term name of a property term is also referred to as its property term name.

The class of property terms has the following class name:

Class definition

Name http://www.
Type http://www.
Superclass http://www.
Required properties http://www.

http://www.

w3.
w3.
w3.
w3.
w3.

org/1999/02/22-rdf-syntax-ns#Property
org/2000/01/rdf-schema#Class
org/2000/01/rdf-schema#Resource
org/1999/02/22-rdf-syntax-ns#type
org/2000/01/rdf-schema#range

16

Basic Concepts for Genealogical Standards

Note—The rdf:Property termis defined in §2.8 of [RDF Schema]. Aswiththe rdfs:Class
term, an implementer may safely use the rdf : Property terms for the purposes of this stan-
dard without reading [RDF Schemal].

I Editorial note — The notion of cardinality may also be moved here from [CEV Concepts].

5.2.1 Range

The range of a property term is a formal specification of allowable property values for a property
whose property name is that property term. The range sHALL be a class name or a datatype name.

Note — Datatypes provide a formal description of the values allowed in a particular context.
They are defined in §6 of this standard.

When the range is a class, the property value sHALL be a term whose type is that class; when the
range is a datatype, the value associated with the property shall be a string in the lexical space of that
datatype.

Example — An earlier example gave a hypothetical cardinality property term that might
be used when defining genealogical events. Most likely, the property value of this property
would be a representation of “one” or “unbounded”, depending on whether the event is
one that can occur just once, or whether it can occur multiple times. The party defining
this property would need to consider how best to represent these two values.

One option is to define two terms to represent these options, say:

https://example.com/events/SinglyOccurring
https://example.com/events/MultiplyOccurring

The context in which these two terms can be used is when specifying a cardinality, so a
Cardinality class would be defined:

https://example.com/events/Cardinality

The type of SinglyOccuring and MultiplyOccuring would be Cardinality, and the
range of the cardinality property would be the Cardinality class. Having a property
and the class that serves as its range only differing in capitalisation is a common idiom.

A second option is to use two strings to represent the possible cardinalities, perhaps “1” and
“unbounded”. A datatype would then be defined whose lexical space consisted of just these
two strings, and the datatype given a name like:

https://example.com/events/Cardinality

As in the first option, the range of the cardinality property would be the Cardinality
class.

17

Basic Concepts for Genealogical Standards

A third and likely preferable option would be to name the cardinality property differ-
ently, say canOccurMultiply, so that its range could be a standard boolean datatype like
xsd:boolean.

Note—This standard has already defined one property term, namely the rdf : type property
termin §5.1.1. The type of a term is the class which denotes the context in which it can be
used. Therefore the range of rdf: type is rdfs:Class, as shown in the property definition
table in §5.1.1.

Standards which define property terms sHouLD specify their range, and must do so if third parties
are permitted to define their own terms and if it is RECOMMENDED or REQUIRED that these third parties
document or otherwise make available the information represented by the property term.

Note — This is the same wording that is used in §5.2 to specify when a property term MUSsT
be defined. In circumstances where a property term MusT be defined, its range MusT also
be defined.

The range of a property term is itself a property which is defined as follows:

Property definition

Name http://www.w3.0rg/2000/01/rdf-schema#range
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2000/01/rdf-schema#Class

Note — The range of the rdfs: range property is defined above to be rdfs: Class, although
the property value of an rdfs : range property can be either a class name or a datatype name.
This works because rdfs:Datatype is defined as a subclass of rdfs:Class, and therefore
a datatype name can be used where a class name is required.

Editorial note — We may need to introduce the concepts of the domain of a property term,
currently in our Vocabularies policy. Careful consideration will be needed before the do-
main is introduced to ensure it does not cause forwards compatibility problems if new uses
are found for the property.

5.2.2 Required properties

A property which musT be provided when a third party defining a new term with some particular type
is called a required property.

Example — The notion of a datatype is defined in §6 of this standard, and is common to
many FHISO standards. Datatypes are identified by a term known as their datatype name,
and any party defining a datatype for use with FHISO standards is REQUIRED to specify its pat-

18

https://tech.fhiso.org/policies/vocabularies

Basic Concepts for Genealogical Standards

tern, supertype if any, and whether it is an abstract datatype. These pieces of information
are specified via three properties called types:pattern, types:nonTrivialSupertype
and types:isAbstract. These three properties are therefore the required properties for
datatypes. In fact, datatypes have a fourth required property which is their type: i.e. a state-
ment that the term is a datatype.

The type of a new term being defined is a class, and therefore the list of the property names of the re-
quired properties of a term defined with that type is a property of that class. The property representing
the required properties of a class is defined as follows:

Property definition

Name https://terms.fhiso.org/types/requiredProperty
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property

Editorial note— This data model does not provide a convenient mechanism for the property
value to be a list. Therefore, instead of one requiredProperties property whose value is
a list of property names, classes will normally have multiple requiredProperty properties
each of whose value is a single property name.

The required properties of a class sHALL include all the required properties of each superclass of the
class.

Note—The rdf: typeisarequired property of rdfs:Resource and all classes are a subclass
of rdfs:Resource, thus rdf: type is a required property of every class.

6 Datatypes

Editorial note — The concepts related to datatypes were originally defined in the CEV Con-
cepts draft. This section and its subsections have been moved here to be more generally
usable.

A datatype is a term which serves as a formal description of the values that are permissible in a
particular context. Being a term, a datatype is identified by a term name which is an IRIL. The term
name of a datatype is also referred to as its datatype name.

A datatype has a lexical space which is the set of strings which are interpreted as valid values of the
datatype. The definition of a datatype sHALL state how each string in its lexical space maps to a logical
value, and state the semantics associated with of those values.

Note — This definition of a datatype is sufficiently aligned with XML Schema’s notion of
a simple type, as defined in [XSD Pt2], that XML Schema’s simple types can be used as
datatypes in this standard. Best practice on how to get an IRI for use as the term name of

19

https://tech.fhiso.org/TR/cev-concepts
https://tech.fhiso.org/TR/cev-concepts
https://www.w3.org/TR/xmlschema11-2/

Basic Concepts for Genealogical Standards

XML Schema types can be found in [SWBP XSD DT]. Similarly, this standard’s definition of a
datatype is very similar to the definition of a datatype in [RDF Concepts], and RDF datatypes
can be used as datatypes in this standard.

Example — XML Schema defines an integer type in §3.4.13 of [XSD Pt2] which is well-suited
for use in this standard. FHISO uses this type where integer values occur. It discussed in
§6.6.3 of this standard.

The mapping from lexical representations to logical values need not be one-to-one. If a datatype has
multiple lexical representations of the same logical value, a conformant application MUsST treat these
representations equivalently and may change a string of that datatype to be a different but equivalent
lexical representation.

Note — This allows applications to store such strings internally using as an entity (such as a
database field or a variable) of some appropriate type without retaining the original lexical
representation.

Example — The XML Schema integer datatype used in the previous example is one where
the mapping from lexical representation to value is many-to-one rather than one-to-one.
This is due to lexical space including strings with a leading + sign as well as superfluous lead-
ing 0s, and means that “00137”, “+137” and “137” all represent the same underlying value:
the number one hundred and thirty-seven. Because conformant applications MAY convert
strings between equivalent lexical representations, they MAy store them in a database in
an integer field and regenerate strings in a canonical representation.

Strings outside the lexical space of a datatype musT NOT be used where a string of that datatype is
required. If an application encounters any such strings, it MAY remove them from the dataset or MAY
convert them to a valid value in an implementation-defined manner. Any such conversion that is
applied automatically by an application musT either be locale-neutral or respect any locale given in
the dataset.

Example — XML Schema defines a date type in §3.3.9 of [XSD Pt2] which has a lexical space
based on [ISO 8601] dates. If, in a dataset that is somehow identified as being written in
German, an application encountering the string “8 Okt 2000” in a context where an XML
Schema date is expected, it MAY convert this to “2000-10-08”. However an application
encountering the string “8/10/2000” musT NOT conclude this represents 8 October or 10
August unless the document includes a locale that uniquely determines the date format. In
this case, information that the document is in English is not sufficient as different English-
speaking countries have different conventions for formatting dates.

This standard uses the rdfs:Datatype class as the class of datatypes, defined as follows:

20

https://www.w3.org/TR/swbp-xsch-datatypes/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

Basic Concepts for Genealogical Standards

Class definition

Name http://www.w3.0rg/2000/01/rdf-schema#Datatype
Type http://www.w3.0rg/2000/01/rdf-schema#Class
Superclass http://www.w3.0rg/2000/01/rdf-schema#Class
Required properties http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

https://terms.fhiso.org/types/pattern
https://terms.fhiso.org/types/nonTrivialSupertypeCount
https://terms.fhiso.org/types/isAbstract

Note — The rdfs:Datatype term is defined in §2.4 of [RDF Schema].

Note — The class of datatypes, rdfs:Datatype, is defined here to be a subclass of the class
of all classes, rdfs:Class. This may appear counter-intuitive as new classes are normally
defined to be a subclass only of rdfs:Resource, the universal superclass. The reason for
doing this is partly for compatibility with its definition in [RDF Schemal, but the reasons
[RDF Schema] took this unusual decision are also valid here.

Making rdfs:Datatype a subclass of rdfs:Class says that a datatype name MAY be used
where a class name is expected. In many situations this is desirable. For example, the range
of a property is, in general, a class name, but frequently a datatype name will be used:
for example, the range of types:isAbstract is the xsd:boolean datatype. By making
rdfs:Datatype a subclass of rdfs:Class, the range of rdfs:range can be rdfs:Class.

6.1 Patterns

A party defining a datatype sHALL specify a pattern for that datatype. This is a regular expression
which provides a constraint on the lexical space of the datatype. Matching the pattern might not
be sufficient to validate a string as being in the lexical space of the datatype, but parties defining
a datatype musT ensure that all strings in the lexical space match the pattern, even if some strings
outside the lexical space also match the pattern.

Note — Patterns are included in this standard to provide a way for an application to find
out about the lexical space of a unfamiliar datatype through discovery.

Example — The XML Schema date type mentioned in a previous example has the following
pattern (here split onto two lines for readability — the second line is an optional timezone
which the XML Schema date type allows).

-?2([1-91[0-91{3,}[0[0-9]{3})-(0[1-9]|1[0-2])-(0[1-9]|[12][0-9]|3[01])
(Z| (\+]-)((0[0-97|1[0-3]):[0-5][0-91]14:00))?

This pattern matches strings like “1999-02-31”. Despite matching the pattern, this string
is not part of the lexical space of this date type as 31 February is not a valid date.

21

Basic Concepts for Genealogical Standards

The property term representing the pattern of a datatype is defined as follows:

Property definition

Name https://terms.fhiso.org/types/pattern
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range https://terms.fhiso.org/types/Pattern

Note — The types:Pattern datatype used as the range of this property is defined in a
separate [FHISO Patterns] standard which defines the dialect of regular expressions which
FHISO supports.

Editorial note — We added [FHISO Patterns] after adding most of the pattern examples in
this and other current draft standards, and have not yet reviewed them to ensure they all
match that regular expression syntax.

Editorial note— This standard does not use xsd: pattern as the property term, even though
it is used as a predicate in OWL 2. Its use would pose a difficulty because none of the rel-
evant W3C specifications indicate what the rdfs:domain of xsd:pattern is supposed to
be. Possibly it is an owl :Restriction, which would be incompatible with this use. Using
xsd:patternwould also require us to use precisely the form of regular expression defined
in Appendix G of [XSD Pt2].

A datatype with a pattern other than “. *” is known as a structured datatype, while one with a pattern
of “.*” is known as an unstructured datatype.

6.2 Subtypes

A datatype may be defined as a subtype of one or more other datatype which are referred to as its
supertypes. This is used to provide a more specific version of a more general datatype. If an appli-
cation is unfamiliar with the subtype it MmaY process it as if it were one of its supertypes. The subtype
MusT be defined in such a way that at most this results in some loss of meaning but does not introduce
any false implications about the dataset.

Editorial note — Would it be a useful simplification if this definition said something along
the following lines? If a datatype has more than one supertype which are not abstract
datatypes, one of these supertypes sHALL be the subtype of all of the others. This is similar
to Java’s rule on inheritance: you can multiply inherit interfaces (here abstract datatypes)
but only singly inherit a class (here datatypes other than abstract datatypes).

The lexical space of the subtype sHALL be a subset of the lexical space of the supertype.

22

https://www.w3.org/TR/owl2-syntax/

Basic Concepts for Genealogical Standards

Note — It is the lexical space of the subtype that is required to be a subset of the lexical
space of the supertype. The set of strings that match the pattern of the subtype might not
necessarily be a subset of that of the supertype. This is because the pattern is permitted to
match strings outside the lexical space, as in the example of the date “1999-02-31".

Editorial note — This section needs an example, but not one involving language-
tagged datatypes as they have yet to be defined. Currently the only uses of subtypes
as with language-tagged datatypes, or involve the rather arcane ultimate supertypes,
xsd:anyAtomicType. Itis anticipated that dates will provide a good example, as we expect
to need several subtypes of AbstractDate, but FHISO has yet to specify how dates are
handled in this data model.

Note — The concept of a subtype in this standard corresponds to XML Schema’s concept of
derivation of a simple type by restriction per §3.16 of [XSD Pt1]. XML Schema does not have
concept compatible with this standard’s notion of an abstract datatype, as in XML Schema
only complex types can be abstract and complex types are not strings. If it is desirable to
describe a FHISO abstract datatype in XML Schema, it should be defined as a normal simple
type, with the information that it is abstract conveyed by another means.

All datatypes are implicitly a subtype of the xsd:anyAtomicType abstract datatype defined to be the
universal supertype in §6.6.6.

I Editorial note — The following paragraph is duplicated in §5.1.3.

The notion of a subtype is transitive, meaning that if a datatype is a subtype of a second datatype, and
that second datatype is a subtype of a third datatype, then the first datatype is a subtype of the third.
The notion of a subtype is also reflexive, meaning that a datatype is by definition a subtype of itself.
The notion of a supertype is similarly transitive and reflexive.

6.2.1 Non-trivial supertypes {non-trivial-types}

The trivial supertypes of a datatype are certain supertypes whose status as a supertype of the datatype
is implied by the data model defined in this standard. The trivial supertypes of a datatype include the
datatype itself and the universal supertype, xsd:anyAtomicType. A supertype which not a trivial
supertype is called a non-trivial supertype.

Note — Unions of datatypes, as defined in §6.5, are also trivial supertypes.

The property term representing a non-trivial supertype of a datatype is defined as follows:

23

https://www.w3.org/TR/xmlschema11-1/

Basic Concepts for Genealogical Standards

Property definition

Name https://terms.fhiso.org/types/nonTrivialSupertype
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2000/01/rdf-schema#Datatype

Editorial note— An earlier unpublished draft of this standard reused the rdfs: subClassOf
property to represent the supertype of a datatype. This introduced a fairly obscure incom-
patibility with RDF. RDF only requires that the value space of a subtype is a subset of the
value space of the supertype: it says nothing about their lexical spaces. Thus in RDF it
would be possible for xsd:boolean to be a subclass of xsd:integer if the boolean val-
ues “true” and “false” are considered to be identical to the integer values 1 and 0, respec-
tively (though in fact they’re not). This is despite the strings “true” and “false” being part
of lexical space of xsd:boolean but not of xsd: integer. This means a stronger relation-
ship is needed which constrains both the lexical space and the value space. This is what
types:nonTrivialSupertype provides. This standard explicitly does not state whether
types:nonTrivialSupertypeis an rdfs:subPropertyOf rdfs:subClassOf.

The types:nonTrivialSupertype property MusT NOT be used to record a trivial supertypes of the
datatype.

A types:nonTrivialSupertype property musT be used to record every non-trivial supertype of a
datatype which is not implied by the transitivity of types:nonTrivialSupertype and the other
types:nonTrivialSupertype properties present.

Example — Suppose a hypothetical standard defines three datatypes, DateTime, Date, and
Year. If the standard specifies that Year has a types:nonTrivialSupertype property
with property value Date, and that Date hasa types:nonTrivialSupertype property with
property value DateTime, it is not necessary for the standard to record that Year has a
second types:nonTrivialSupertype property with property value DateTime as this is
implied by the other two. Nevertheless, the standard may do so.

As a way of checking for data integrity during discovery, an additional property is provided rep-
resenting the number of non-trivial supertypes of the datatype that are either recorded using
types:nonTrivialSupertype properties or are implied by them via transitivity:

Property definition

Name https://terms.fhiso.org/types/nonTrivialSupertypeCount
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2001/XMLSchema#integer

24

Basic Concepts for Genealogical Standards

I Editorial note — Should this have a range of xsd:nonNegativeInteger instead?

This types:nonTrivialSupertypeCount property is a required property of rdfs:Datatype, and
must be specified (with a value of “0”) even if there are no non-trivial supertypes.

An application which finds out about a datatype through discovery must NOT assume it knows the
supertypes of the datatype unless it has verified that the number of non-trivial supertypes specified
with the types:nonTrivialSupertype property or implied by the transitivity of that property is
equal to the value of the types:nonTrivialSupertypeCount property.

Editorial note — These two properties are likely to be changed in a future draft. A cleaner
implementation would be to have a single types:supertypes property which is a list of
the non-trivial supertypes of the datatype, however at the moment the data model does not
support list-valued properties. This is a recognised deficiency in the current data model
that is likely to be changed, but which requires considerable work.

The reason why a single list-valued property is inherently safe whereas a collection
of a properties is not is that the list-valued property can be made a required property
which musT be present exactly once. If it is not, an application knows that is missing
and will not assume it properly understands the datatype. However if one of several
types:nonTrivialSupertype properties goes missing, this might go unnoticed. This is
particular relevant if the properties have been processed by RDF applications, as the RDF
philosophy is that RDF triples can be taken in isolation and that removing one or more
RDF triples merely loses information rather than altering the meaning of something. It is
therefore quite conceivable that an RDF triple encoding a property might go missing.

In [CEV Concepts], a missing types:nonTrivialSupertype might result in a datatype be-
ing incorrectly thought not to conform to the range of some citation element, which might
result in a valid citation element being discarded. The importance of avoiding this is the
reason why the current draft includes a types:nonTrivialSupertypeCount as a check.

In the datatype definition tables in this standard, a single supertype row is given which is understood
to contain a complete list of all non-trivial supertypes and no trivial supertypes.

Editorial note — A future version of this standard needs to address what changes may be
made to an existing datatype hierarchy. Specifically, can a new non-trivial supertype be in-
jected into an existing hierarchy? Doing so changes the number of non-trivial supertypes
a datatype has, so at present it would break third-party subtypes. A related question is
whether a third party can inject their own non-trivial supertype into your datatype hierar-
chy. Probably they should not be allowed to, and most use cases where this might be needed
can hopefully be accommodated with a union of datatypes.

25

Basic Concepts for Genealogical Standards

6.3 Abstract datatypes

A datatype MAY be defined to be a abstract datatype. An abstract datatype is one that MusT only be
used as a supertype of other types. A string MusT NOT be declared to have a datatype which is an
abstract datatype. Abstract datatypes sHALL specify a pattern and sHALL have a lexical space.

Note — The lexical space of an abstract datatype and any pattern defined on it serve to
restrict the lexical space of all its subtypes. If no such restriction is desired, the lexical space
may be defined as the space of all strings.

The property that represents whether or not a datatype is an abstract datatype defined as follows:

Property definition

Name https://terms.fhiso.org/types/isAbstract
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2001/XMLSchema#boolean

Editorial note — Are abstract datatypes a necessary part of our data model at all? They were
introduced to allow an AbstractDate datatype, but is it necessary for this datatype to be
an abstract datatype?

6.4 Language-tagged datatypes

A language-tagged datatype is a datatype whose values are language-tagged strings consisting of
both a string from the lexical space of the datatype and a language tag to identify the language in
which that particular string is written.

Language-tagged datatypes sHOULD be used whenever a datatype is needed to represent textual data
that is in a particular language or script and which cannot automatically be translated or transliter-
ated as required, and sHOULD NOT be used otherwise.

Example — In a context where a year Anno Domini is required, a language-tagged datatype
SHOULD NOT be used, and the lexical space of the datatype should encompass strings like, say,
“2015”. Even though an application designed for Arabic researchers might need to render
this year as “Y-10” using Eastern Arabic numerals, this conversion can be done entirely in
the application’s user interface, so a language-tagged datatype is not required and SHOULD
NOT be used.

Example — The [CEV Vocabulary] defines a datatype for representing the names of authors
and other people, which has the following term name:

https://terms.fhiso.org/sources/AgentName

26

Basic Concepts for Genealogical Standards

A person’s name is rarely translated in usual sense, but may be transliterated. For example,
the name of Andalusian historian _..J 53! sc Lo might be transliterated “Sa‘id al-Andalusi”
in the Latin script. Because machine transliteration is far from perfect, a language-tagged
datatype sHOULD be used to allow an application to store both names.

An author’s names may also be respelled to conform to the spelling and grammar rules
of the reader’s language. An Englishman named Richard may be rendered “Rikardo” in
Esperanto: the change of the “c” to a “k” being to conform to Esperanto orthography, while
the final “0” marks it as a noun. The respelling would be tagged eo, the language code for
Esperanto.

Language-tagged datatypes sHALL define a pattern, just as other datatypes do.

Note — Because the language tag is not part of the lexical space of the datatype, and is not
embedded in the string, a pattern cannot be used to constrain the language tag.

A datatype that is not a language-tagged datatype is called a non-language-tagged datatype.

Note — This means the classification of datatypes as language-tagged or non-language-
tagged is orthogonal to their classification as structured or unstructured. It is anticipated
that most non-language-tagged datatypes will be structured datatype.

Example — The AgentName datatype from the previous example is a microformat which is
constrained by a pattern meaning it is a structured datatype, but it is also a language-tagged
datatype as names can be translated and transliterated.

A language-tagged datatypes mMaY be used as a supertype of a datatype. All subtypes of a language-
tagged datatype sHALL also be language-tagged datatypes.

Editorial note — An earlier unpublished draft of this standard also said that the subtypes
of a non-language-tagged datatypes (other than xsd:anyAtomicType) were REQUIRED to be
non-language-tagged, with an exception for subtypes. This requirement has been dropped
to allow unions to be defined which contain a mixture of language-tagged datatypes and
non-language-tagged datatypes.

All language-tagged datatypes are implicitly a subtype of the rdf:langString datatype defined in
§6.6.5.

Note—There is noneed for a property stating whether or not a datatype is a language-tagged
datatype because this information is conveyed using the types:nonTrivialSupertype
property.

27

Basic Concepts for Genealogical Standards

6.5 Unions of datatypes

A union of datatypes is an abstract datatype which is defined in terms of a unordered list of two or
more distinct datatypes called its constituent datatypes. The constituent datatypes MusT NOT them-
selves be unions of datatypes. The lexical space of a union of datatypes is the union of the lexical spaces
of each constituent datatype.

Note — There is no requirement that the lexical spaces of each constituent datatype be dis-
joint.

Like any other datatype, a union of datatypes is a term with a term name. It MmusT also specify a pattern.

Editorial note — The following example describes a formalism for dates which has not yet
been agreed nor even properly discussed. It is likely to change.

Example — FHISO plans to define a datatype for representing dates which has the following
datatype name:

https://terms.fhiso.org/dates/Date
It is a union of datatypes with the following two constituent datatypes:

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#langString
https://terms.fhiso.org/dates/AbstractDate

The former is the language-tagged datatype defined in §6.6.5 and is used to record dates
that are described in a way that cannot be converted to a structured form without loosing
information. The latter is an abstract datatype which serves as the supertype for various
structured datatypes for dates.

Because the rdf:langString constituent datatype is an unstructured datatype, every pos-
sible string is part of that of the lexical space of that datatype, and therefore also part of
the lexical space of the union of datatypes. This means the pattern specified for the union of
datatypes musT allow every possible string, and so SHOULD be “. *”.

Editorial note —In the second draft of [CEV Concepts], which is where they were previously
defined, unions of datatypes were not themselves datatypes as they lacked a term name to
identify them, did not have a pattern, and could not be used as a subtype or supertype. As
that draft noted, this is just a matter of nomenclature, and it seems more useful to make
them proper datatypes in their own right.

A union of datatypes may contain language-tagged datatypes, non-language-tagged datatypes, or a mix-
ture of both.

Each constituent datatype of a union of datatypes is a subtype of the union of datatypes. Whenever a
union of datatypes is supertype of some other datatype it is defined to be a trivial datatype.

28

Basic Concepts for Genealogical Standards

Note — This means that every datatype has an unbounded set of trivial supertypes because
every possible union of datatypes which has the datatype as a constituent datatype is a su-
pertype of it. The set of non-trivial supertypes remains finite.

A datatype sHALL be a supertype of a union of datatypes if and only if it is a supertype of every con-

stituent datatype of the union of datatypes.

Note — Because the set of supertypes of each constituent datatype is unbounded, the set of
supertypes of a union of datatypes is also unbounded as it contains every union of datatypes
whose set of constituent datatypes is a superset of its own. The set of non-trivial supertypes

remains finite.

Example — In previous example, neither rdf:langString nor AbstractDate has any non-
trivial supertypes, and therefore neither does the Date union of datatypes.

Example — In a union of datatypes whose constituent datatypes are all language-tagged
datatypes, each constituent datatype is a subtype of rdf:langString and therefore
rdf:langString is a non-trivial supertype of the union of datatypes. This means the union
of datatypes is classified as a language-tagged datatype.

The class of unions of datatypes is defined as follows:

Class definition

Name http://www.w3
Type http://www.w3.
Superclass http://www.w3.

Required properties http://www.w3.
https://terms.
https://terms.
https://terms.
https://terms.

.org/2000/01/rdf-schema#Union

org/2000/01/rdf-schema#Class
org/2000/01/rdf-schema#Datatype
org/1999/02/22-rdf-syntax-ns#type

fhiso.

fhiso

org/types/pattern

.org/types/nonTrivialSupertypeCount
fhiso.
fhiso.

org/types/isAbstract
org/types/constituentDatatypeCount

Note — The main reason for defining a class for unions of datatypes is so that appli-
cations can distinguish unions of datatypes from other datatypes in order to check
the number of non-trivial supertypes a datatype has, and whether this matches the
number given in the types:nonTrivialSupertypeCount property. It also allows
types:constituentDatatypeCount to be defined as a required property.

The property which denotes a constituent datatype of a union of datatypes is defined as follows:

29

Basic Concepts for Genealogical Standards

Property definition

Name https://terms.fhiso.org/types/constituentDatatype
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2000/01/rdf-schema#Datatype

As away of checking for data integrity during discovery, an additional property is provided represent-
ing the number of constituent datatypes of the union of datatype:

Property definition

Name https://terms.fhiso.org/types/constituentDatatypeCount
Type http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property
Range http://www.w3.0rg/2001/XMLSchema#integer

Editorial note — Should this have a range of xsd:nonNegativeInteger instead?

Editorial note— These two properties are likely to be changed in a future draft. Much as with
the two properties for recording supertypes given in §6.2, a cleaner implementation would
be to have a single types:unionOf property which is a list of the constituent dataptyes of
the union of datatypes, however at the moment the data model does not support list-valued
properties. This is a recognised deficiency in the current data model that is likely to be
changed, but which requires considerable work.

If and when list-valued properties are added to the data model, it may be that the
owl :unionOf property defined in OWL should be reused instead of inventing our own

property.

6.6 Standard datatypes

This standard recommends the use of the xsd:string, xsd:boolean, xsd:integer and
xsd:anyURI datatypes defined in [XSD Pt2] to represent strings, booleans, integers and IRIs,
respectively. They are described in the following subsections.

Note — XML Schema does not give its types IRIs, but it does give them ids, and following
the best practice advice given in §2.3 of [SWBP XSD DT] gives them IRIs like this:

http://www.w3.0rg/2001/XMLSchema#integer

These types are also recommended for use in RDF by §5.1 of [RDF Concepts]. RDF requires
all datatypes to be identified by an IRI, and IRIs such as the one above are used for XML
Schema datatypes.

This section also contains a summary of the rdf:langString datatype which is used heavily by
FHISO technologies.

30

https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/swbp-xsch-datatypes/
https://www.w3.org/TR/rdf11-concepts/

Basic Concepts for Genealogical Standards

Note — The datatypes described in this section are not intended to be an exhaustive list
of datatypes usable with FHISO technologies, but rather is a list of the most common ones.
Other XML Schema datatypes MAy also be suitable, as may datatypes from other third-party
standards. Other FHISO standards will define additional datatypes.

6.6.1 The xsd:string datatype

Some FHISO standards make limited use of the xsd:string datatype defined in §3.3.1 of [XSD Pt2].
This is an unstructured non-language-tagged datatype which has the following properties:

Datatype definition

Name http://www.w3.0rg/2001/XMLSchema#string
Type http://www.w3.0rg/2000/01/rdf-schema#Datatype
Pattern F

Supertype No non-trivial supertypes
Abstract false

It is a general-purpose datatype whose lexical space is the space of all strings; however it is not a
language-tagged datatype and therefore it SHoULD NOT be used to contain text in a human-readable
natural language.

Note — This type is not the ultimate supertype of all non-language-tagged datatypes. This
is because many other XML Schema datatypes, including xsd:boolean and xsd:integer
are not defined as subtypes of xsd:string in XML Schema.

Use of this datatypeis generally NOT RECOMMENDED: data that is in a human-readable form sHOULD use
a language-tagged datatype, while data that is not human-readable SHOULD use a structured datatype.

If an application encounters a string with the xsd: string datatype in a context where a language-
tagged string would be permitted, the application MmAY change the datatype to rdf:langString and
assign the string a language tag of und, meaning an undetermined language.

Note — The xsd:string datatype is included in this standard in order to align this data
model more closely with the RDF data model, and in particular the [CEV RDFa] bindings
which use this datatype as the default when no language tag is present. The above rule allow-
ing conversion to rdf:langString means that applications MAy ignore the xsd:string
datatype.

6.6.2 The xsd:boolean datatype
A boolean is a datatype with precisely two logical values: true and false. FHISO standards represent

booleans using the xsd:boolean datatype defined in §3.3.2 of [XSD Pt2]. This is a structured non-
language-tagged datatype which has the following properties:

31

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

Basic Concepts for Genealogical Standards

Datatype definition

Name http://www.w3.0rg/2001/XMLSchema#boolean
Type http://www.w3.0rg/2000/01/rdf-schema#Datatype
Pattern true|false|1]|0

Supertype No non-trivial supertypes
Abstract false

The lexical space of this datatype includes four different strings so that the two logical values of the
datatype each have two alternative lexical representations. The value true may be represented by
either “true” or “1”, while the value false MAY be represented by either “false” or “0”. Conformant
applications sHALL NOT attach any significance to which of the alternative lexical representations is
used, and mAY replace any instance of “1” in a boolean string with “true”, or “0” with “false”, but
not vice versa. Where possible, the numeric representations, “0” and “1”, SHOULD NOT be used.

Note — The numeric representations are allowed because xsd:boolean allows them, and
alignment with the XML Schema datatype is desirable as it is widely used in third-party
standards. Appendix E.4 of [XSD Pt2] defines the alphabetic representations, “true” and
“false”, to be the canonical forms of the datatype, and this standard does similarly.

Note — Even though the preferred forms of the allowed values of xsd:boolean are “true”
and “false”, which are in English, it is not a language-tagged datatype because the values
MUST NOT be present in translated form. A Romanian dataset, for example, would still use
the value “false” rather than translating it as “adevarat”.

6.6.3 The xsd:integer datatype

FHISO uses the xsd: integer datatype defined in §3.4.13 of [XSD Pt2] to represent integers. It MUST
NOT be used for values which are typically but not invariably integers.

Example — Quantities that are invariably integer-valued do not occur all that frequently in
genealogy. The page number of material being cited is normally an integer, but not invari-
ably as a page number of a colour plate might be “facing p. 102” and prefatory pages are
often numbered with Roman numerals. For this reason, page numbers should not be rep-
resented with integers. House numbers are similar, as it is not uncommon to find houses
with numbers like “12A” in some countries.

Example — The number of children born to a couple is an example of a value which is
integer-valued. The number might be unknown or might only be known within certain
bounds, but ultimately it is an integer: a couple cannot have 2.4 children.

This datatype can represent arbitrarily large integers, but unless otherwise stated, applications may
opt not to support values greater than 2 147 483 647 or less than -2 147 483 648. In the event an unsup-

32

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

Basic Concepts for Genealogical Standards

ported value is encountered, an implementation MAy handle it in an implementation-defined man-
ner, but MusT NOT convert it to a different integer.

Note — This permits applications to represent an xsd:integer as a signed 32-bit integer
except where otherwise noted.

The lexical space of this datatype is the space of all strings consisting of a finite-length sequence of one
or more decimal digits (U+0030 to U+0039, inclusive), optionally preceded by a + or - sign (U+002B or
U+002D, respectively).

Example — Thus the string “137” is within the lexical space of this datatype, but “20.000”
and “MM+=" are not, despite being normal ways of representing integers in certain cultures.

This datatype has several alternative representations of the same logical integer value. This arises
because leading zeros are permitted, the + sign is optional, and the value -0 is permitted. Applications
MAY remove any leading + sign and any leading zeros preceding a non-zero digit, and MaAy rewrite -0
as 0.

Note — This ensures that applications do not need to preserve the original lexical form of
an integer, only its value.

This is a structured non-language-tagged datatype which has the following properties:

Datatype definition

Name http://www.w3.0rg/2001/XMLSchema#integer
Type http://www.w3.0rg/2000/01/rdf-schema#Datatype
Pattern [+-1?[0-9]+

Supertype No non-trivial supertypes
Abstract false

Editorial note — Its supertype is actually xsd:decimal, but this is not a supported datatype
in this standard.

Note — [XSD Pt2] also provides a range of signed and unsigned datatypes for integers
represented in a specified number of bytes. The datatypes are xsd:byte, xsd:short,
xsd:int, xsd:long and their unsigned equivalents. FHISO discourage the use of all
of these datatypes in conjunction with FHISO standards as there very few genealogical
contexts where an integer is required but where the value can be guaranteed always to fit
in these fixed sized datatypes.

Editorial note— This draft does not include specific guidance on the use of xsd:positivelInteger
and xsd:nonNegativelnteger.

33

https://www.w3.org/TR/xmlschema11-2/

Basic Concepts for Genealogical Standards

6.6.4 The xsd:anyURI datatype

FHISO uses the xsd:anyURI datatype defined in §3.3.17 of [XSD Pt2] to represent strings which are
valid IRIs.

Note — Despite the name of this datatype it is used to represent any IRI, not just those which
are valid URIs. This misleading naming arose because XML Schema 1.0 did restrict the
datatype to just URIs as IRIs were yet to be standardised. XML Schema 1.1 broadened the
definition to include IRIs and FHISO uses this broader definition of the datatype.

Formally this is an unstructured datatype with no restrictions imposed on its lexical space; neverthe-
less, this datatype sHOULD only be used with strings which match the IRI-reference production in
§2.2 of [RFC 3987] which matches both absolute and relative IRIs.

Note — FHISO are following the definition in §3.3.17 of [XSD Pt2] in making this an un-
structured type. XML Schema does this because the rules for validating an IRI are complex,
subject to frequent updates, and dependent on IRI scheme.

Datatype definition

Name http://www.w3.0rg/2001/XMLSchema#anyURI
Type http://www.w3.0rg/2000/01/rdf-schema#Datatype
Pattern F

Supertype No non-trivial supertypes
Abstract false

6.6.5 The rdf:langString datatype

The rdf:langString datatype defined in §2.5 of [RDFS] is used as the general-purpose unstructured
language-tagged datatype. No constraints are placed on the lexical space of this datatype; the only
restriction placed on the use or semantics of this datatype is that it SHOULD contain text in a human-
readable form.

Any language-tagged datatype that is not defined to be a subtype of some other datatype sHALL implic-
itly be considered to be a subtype of the rdf: langString datatype.

Note — Together with the requirement in §6.4 that language-tagged datatypes MUST NOT be
subtypes of non-language-tagged datatypes, this ensures that rdf:langString is the ulti-
mate supertype of all language-tagged datatypes.

This datatype has the following properties:

34

https://www.w3.org/TR/xmlschema11-2/
https://tools.ietf.org/html/rfc3987
https://www.w3.org/TR/xmlschema11-2/

Basic Concepts for Genealogical Standards

Datatype definition

Name http://www.w3.0rg/1999/02/22-rdf-syntax-ns#langString
Type http://www.w3.0rg/2000/01/rdf-schema#Datatype
Pattern E

Supertype No non-trivial supertypes
Abstract false

Note— Although this type is formally defined in the RDF Schema specification, this standard
requires no knowledge of RDF; an implementer may safely use this datatype using just the
information given in this section, and without reading [RDF Schema].

6.6.6 The xsd:anyAtomicType datatype

The xsd:anyAtomicType datatype defined in defined §3.2.2 of [XSD Pt2] is used as the universal
supertype of all datatypes.

This datatype has the following properties:

Datatype definition

Name http://www.w3.0rg/2001/XMLSchema#anyAtomicType
Type http://www.w3.0rg/2000/01/rdf-schema#Datatype
Pattern ¥

Supertype No non-trivial supertypes
Abstract true

Note — The xsd:anyAtomicType datatype is defined §3.2.2 of [XSD Pt2]. That standard
does not define it as an abstract datatype as XML Schema’s notion of abstract types does
not extend to simple types. Neverthless, xsd:anyAtomicType is treated specially by XML
Schema in a way that is similar to this standard’s definition of an abstract datatype. 1t is
also not considered an “RDF-compatible XSD type” in §5.1 of [RDF Concepts] which means
it sHOULD NOT be used as a datatype in RDF; again, this is similar to this standard’s notion
of an abstract datatype.

Any non-language-tagged datatype not defined to be a subtype of any other datatype sHALL implicitly
be considered to be a subtype of the xsd:anyAtomicType datatype.

Editorial note — In RDF, xsd:anyAtomicType is a subclass of rdfs:Literal. So is
rdf:langString. This standard does not explicitly say this as FHISO’s data model
currently has no need for the rdfs:Literal class.

35

https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xmlschema11-2/

Basic Concepts for Genealogical Standards

7 References

7.1 Normative references

[1SO 10646]
ISO (International Organization for Standardization). ISO/IEC 10646:2014. Information tech-
nology — Universal Coded Character Set (UCS). 2014.

[FHISO Patterns]
FHISO (Family History Information Standards Organisation). The Pattern Datatype. First pub-
lic draft.

[RDFS]
W3C (World Wide Web Consortium). RDF Schema 1.1. W3C Recommendation, 2014. (See https:
[[www.w3.org/TR/rdf-schema.)

[RFC 2119]
IETF (Internet Engineering Task Force). RFC 2119: Key words for use in RFCs to Indicate Re-
quirement Levels. Scott Bradner, eds., 1997. (See https://tools.ietf.org/html/rfc2119.)

[RFC 3987]
IETF (Internet Engineering Task Force). RFC 3987: Internationalized Resource Identifiers (IRIs).
Martin Duerst and Michel Suignard, eds., 2005. (See https://tools.ietf.org/html/rfc3987.)

[RFC 5646]
IETF (Internet Engineering Task Force). RFC 5646: Tags for Identifying Languages. Addison
Phillips and Mark Davis, eds., 2009. (See https://tools.ietf.org/html/rfc5646.)

[RFC 7230]
IETF (Internet Engineering Task Force). RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing. Roy Fielding and Julian Reschke, eds., 2014. (See https://tools.ietf.org/
html/rfc7230.)

[RFC 7231]
IETF (Internet Engineering Task Force). RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. Roy Fielding and Julian Reschke, eds., 2014. (See https://tools.ietf.org/
html/rfc7231.)

[Triples Discovery]
FHISO (Family History Information Standards Organisation). Simple Triples Discovery Mecha-
nism. First public draft.

[UAX 15]
The Unicode Consortium. “Unicode Standard Annex 15: Unicode Normalization Forms” in The
Unicode Standard, Version 8.0.0. Mark Davis and Ken Whistler, eds., 2015. (See http://unicode.
org/reports/trl5/.)

[XML]
W3C (World Wide Web Consortium). Extensible Markup Language (XML) 1.1, 2nd edition. Tim

36

https://www.w3.org/TR/rdf-schema
https://www.w3.org/TR/rdf-schema
https://tools.ietf.org/html/rfc2119
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc5646
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/

Basic Concepts for Genealogical Standards

Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francois Yergeau, and John Cowan eds.,
2006. W3C Recommendation. (See https://www.w3.org/TR/xml11/.)

7.2 Other references

[ANSEL]
NISO (National Information Standards Organization). ANSI/NISO Z39.47-1993. Extended Latin
Alphabet Coded Character Set for Bibliographic Use. 1993. (See http://www.niso.org/apps/
group_public/project/details.php?project_id=10.) Standard withdrawn, 2013.

[CEV Concepts]
FHISO (Family History Information Standards Organisation). *Citation Elements: General Con-
cepts“. Third public draft. See https://fhiso.org/TR/cev-concepts.

[CEV RDFa]
FHISO (Family History Information Standards Organisation). Citation Elements: Bindings for
RDFa. Third public draft. (See https://thiso.org/TR/cev-rdfa-bindings.)

[CEV Vocabulary]
FHISO (Family History Information Standards Organisation). Citation Elements: Vocabulary.
Exploratory draft.

[GEDCOM]

The Church of Jesus Christ of Latter-day Saints. The GEDCOM Standard, draft release 5.5.1. 2
Oct 1999.

[IANA Lang Subtags]
IANA (Internet Assigned Numbers Authority). Language Subtag Registry. Online data file. (See
http://www.iana.org/assignments/language-subtag-registry.)

[I1SO 639-1]
ISO (International Organization for Standardization). ISO 639-1:2002. Codes for the represen-
tation of names of languages — Part 1: Alpha-2 code. 2002.

[ISO 639-2]
ISO (International Organization for Standardization). ISO 639-2:1998. Codes for the represen-
tation of names of languages — Part 2: Alpha-3 code. 1998. (See http://www.loc.gov/standards/
is0639-2/.)

[ISO 639-3]
ISO (International Organization for Standardization). ISO 639-3:2007. Codes for the represen-
tation of names of languages — Part 3: Alpha-3 code for comprehensive coverage of languages.
2007.

[ISO 639-5]
ISO (International Organization for Standardization). ISO 639-5:2007. Codes for the represen-
tation of names of languages — Part 5: Alpha-3 code for language families and groups. 2008.

[1SO 3166-1]
ISO (International Organization for Standardization). ISO 3166-1:2006. Codes for the repre-

37

https://www.w3.org/TR/xml11/
http://www.niso.org/apps/group_public/project/details.php?project_id=10
http://www.niso.org/apps/group_public/project/details.php?project_id=10
https://fhiso.org/TR/cev-concepts
https://fhiso.org/TR/cev-rdfa-bindings
http://www.iana.org/assignments/language-subtag-registry
http://www.loc.gov/standards/iso639-2/
http://www.loc.gov/standards/iso639-2/

Basic Concepts for Genealogical Standards

sentation of names of countries and their subdivisions — Part 1: Country codes. 2006. (See
https://www.iso.org/iso-3166-country-codes.html.)

[ISO 15924]
ISO (International Organization for Standardization). ISO 15924:2004. Codes for the represen-
tation of names of scripts. 2004.

[N-Triples]
W3C (World Wide Web Consortium). RDF 1.1 N-Triples. David Becket, 2014. W3C Recommen-
dation. (See https://www.w3.org/TR/n-triples/.)

[RDF Concepts]
W3C (World Wide Web Consortium). RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak,
David Wood and Markus Lanthaler, eds., 2014. W3C Recommendation. (See https://www.w3.
org/TR/rdf11-concepts/.)

[RDF Schemal
W3C (World Wide Web Consortium). RDF Schema 1.1. Dan Brickley and R. V. Guha, eds., 2014.
W3C Recommendation. (See https://www.w3.org/TR/rdf-schema.)

[RFC 4122]
IETF (Internet Engineering Task Force). A Universally Unique IDentifier (UUID) URN Names-
pace. P. Leach, M. Mealling and R. Salz, ed., 2005. (See https://tools.ietf.org/html/rfc4122.)

[RFC 4648]
IETF (Internet Engineering Task Force). RFC 4648: The Base16, Base32, and Base64 Data Encod-
ings. S. Josefsson, ed., 2006. (See https://tools.ietf.org/html/rfc4648.)

[RFC 7159]
IETF (Internet Engineering Task Force). RFC 7159: The JavaScript Object Notation (JSON) Data
Interchange Format. T. Bray, ed., 2014. (See https://tools.ietf.org/html/rfc7159.)

[RFC 7469]
IETF (Internet Engineering Task Force). Public Key Pinning Extension for HTTP. C. Evans, C.
Palmer and R. Sleevi, ed., 2015. (See https://tools.ietf.org/html/rfc7469.)

[SWBP XSD DT]
W3C (World Wide Web Consortium). XML Schema Datatypes in RDF and OWL. Jeremy]J.
Carroll and Jeff Z. Pan, eds., 2006. W3C Working Group Note. (See https://www.w3.org/TR/
swbp-xsch-datatypes/.)

[UN M.49]

United Nations, Statistics Division. Standard Country or Area Codes for Statistical Use, revision
4. United Nations publication, Sales No. 98.XVII.9, 1999.

[XML Names]
W3C (World Wide Web Consortium). Namespaces in XML 1.1, 2nd edition. Tim Bray, Dave
Hollander, Andrew Layman and Richard Tobin, ed., 2006. W3C Recommendation. (See https:
[f[www.w3.org/TR/xml-names11/.)

38

https://www.iso.org/iso-3166-country-codes.html
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-schema
https://tools.ietf.org/html/rfc4122
https://tools.ietf.org/html/rfc4648
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7469
https://www.w3.org/TR/swbp-xsch-datatypes/
https://www.w3.org/TR/swbp-xsch-datatypes/
https://www.w3.org/TR/xml-names11/
https://www.w3.org/TR/xml-names11/

Basic Concepts for Genealogical Standards

[XSD Pt1]

W3C (World Wide Web Consortium). W3C XML Schema Definition Language (XSD) 1.1 Part 1:
Structures. Shudi Gao (Z% %), C. M. Sperberg-McQueen and Henry S. Thompson, ed., 2012.
W3C Recommendation. (See https://www.w3.org/TR/xmlschemal1-1/.)

[XSD Pt2]

W3C (World Wide Web Consortium).

W3C XML Schema Definition Language (XSD)
1.1 Part 2: Datatypes.

David Peterson, Shudi Gao (& % %), Ashok Malhotra, C. M.
Sperberg-McQueen and Henry S. Thompson, ed., 2012.

W3C Recommendation. (See
https://www.w3.org/TR/xmlschema1l1-2/.)

Copyright © 2017-18, Family History Information Standards Organisation, Inc. The text of this stan-
dard is available under the Creative Commons Attribution 4.0 International License.

39

https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/
https://fhiso.org/
https://creativecommons.org/licenses/by/4.0/

	Conventions used
	Characters and strings
	Language tags
	Terms
	IRI resolution
	Namespaces
	Prefix notation

	Underlying type system
	Classes
	The type of a term
	The class of classes
	Subclasses
	The universal superclass

	Properties
	Range
	Required properties

	Datatypes
	Patterns
	Subtypes
	Non-trivial supertypes {non-trivial-types}

	Abstract datatypes
	Language-tagged datatypes
	Unions of datatypes
	Standard datatypes
	The xsd:string datatype
	The xsd:boolean datatype
	The xsd:integer datatype
	The xsd:anyURI datatype
	The rdf:langString datatype
	The xsd:anyAtomicType datatype

	References
	Normative references
	Other references

