
CFPS 67
(Call for Papers Submission number 67)

Proposal to extend the calendar style
mechanism of CFPS 43 into an

abstract formatting model

Submitted by: Smith, Richard

Created: 2013-04-30

URL: Most recent version: http://fhiso.org/files/cfp/cfps67.pdf
This version: http://fhiso.org/files/cfp/cfps67_v1-0.pdf

Description: CFPS 43's style mechanism is extended into abstract
formatting model that would allow applications to format
correctly dates written in many unknown calendar systems.

Keywords: dates, calendars, date style, formatting, calendar facets

 Family History Information Standards Organisation, Inc. http://fhiso.org/

Abstract

is paper develops the concept of a calendar style s proposed in  43
to encapsulate important presentational aspects of dates, and in the process
renames them calendar facets. e need to support third-party facets, po-
tentially in combination, requires a general vocabulary to be used in their
definitions. A simple vocabulary is provided by a placing facets into classes,
and two such classes are proposed: one relating to the presentation of years,
and one for the rest of the date. Two new facets are proposed to serve as
the defaults for these classes.

It is shows how facets can be used to develop an abstract and extensible
model for formaing dates, thereby allowing applications to beer handle
unfamilar calendars. Two further classes and associated default facets are
introduced to describe remaining aspects of formaing, and formal defi-
nitions are given for the four facets proposed in this paper. Aer several
further examples of this framework in use, it is noted that a major use of
facets will be to specify year numbering schemes that count from a different
epoch. A general alogithm is given for handling arbitrary epochs.

1 Introduction

ediscussion in  43 lead to proposal that dates should have optional calendar
style s aached to them in order to record important characteristics about how
a source recorded a date [1]. is paper uses the term calendar facet where  43
used clendar style . Several example facets were given: lady-day for the use
of years reckoned from Lady Day (25 March); roman for the Roman reckoning of
days relative to the Kalends, Nones and Ides; and some for regnal years. It was
noted that certain styles were orthogonal: for example, the Roman reckoning of
days could be used in conjunction with regnal years.

e set of style s needs to be extensible to allow applications to note important
characteristics of dates that may not have been standardised. As an example, in
its laer years, the Ooman Empire used a variant of the Julian calendar known
as the Rumi calendar in which years were counted fromMuhammad’s emigration
(or Hijra) from Mecca to Medina in 622 , with March as the first month of the
year. For the purpose of the present discussion, this paper assumes that the 
has not standardised this calendar, but that a particular application wants to use
it. For the reasons discussed in  43, the Rumi calendar should not be treated
as a fundamentally different to the Julian calendar. Instead, the application would
define an anno-hegirae facet, and then appropriately format Julian dates that
are styled with it. Because the serialisation of the date would be as a standard
Julian date with an anno domini year, other applications see a standard Julian
date with an unknown facet, and can still format it and perform calculations with
it (assuming they understand the Julian calendar).

2

If the vendor hopes that other applications will start to support the anno-hegira
facet, its interaction with other facets must be defined. Can it be used with
lady-day? And supposing roman has been developed as a third-party exten-
sion, how can the Rumi calendar vendor make an informed decision on whether
anno-hegirea is compatible with roman when the creators of the two facets
may not be familiar with the other one? A vocabulary is needed to define which
combinations of styles are valid.

2 Facet classes

Certain facets relate only to the presentation of the year, while others relate only
to the way in which the day and month are presented. is paper proposes that
each facet is associated with a facet class, and that only one facet of a given class
is permied. Two classes are proposed here. One is called year and relates to
the style of year used; the other is called recurring that relates to the part of a
date that recurs every year (i.e. the day and month). Two further classes will be
proposed later in this paper; they are included in the table below for convenience
of reference.

Class Default facet Example facets
root year-and-recurring
year common-era lady-day, anno-hegirae
recurring day-in-month roman
month-name western-month icelandic-month, hebrew-month

New facets are also defined, one for each class, that will serve as the default facet of
each class in the Julian and Gregorian calendars. Other calendars will define their
own default facets, but it is likely that these defaults will see significant reuse. e
set of default facets associated with a calendar is known as its default style. When
no facet from a given class is supplied explicitly, the calendar’s default facet for
that class is used.

e common-era facet is used to represent the fact that the year is to be displayed
as a year anno dominiwith years beginning on 1 January. e choice of facet name
reflects the increasingly common practice in the historical literature to write 
in place of . What suffix, if any, is used in the source is not considered an
important characteristic of the date. Similary, the suffix, if any, is actually used
by the application to denote dates writen in this facet is up to the application.

e day-in-month facet denotes a date is specified using a day number together
with a month. It is not considered an important characteristic of the source data
whether the day was given before or aer the month, or whether the month was
spelt out in full, abbreviated, or given as a number.

3

Subject to the requirement of using only one facet from each class (and to the
restriction, discussed in §5.4, that certain facets may be restricted to certain cal-
endars), any combination of facets is valid, even though some combinations, such
as anno-hegirae with roman, may be unlikely to appear in practice. Applica-
tions might support the display of dates with arbitrary combinations of facets by
formaing the recurring (i.e. day and month) part of a date separately to the year
and concatenating them. If an unknown facet is used, it will be ignored, proba-
bly resulting in the default facet being used, though an application might wish to
indicate somehow that an unknown facet was ignored.

3 Abstract formaing model

In this section, the system of facet classes is used to describe an abstract model by
which an application can format dates wrien in an arbitrary calendar, including
calendars not known to the application. To do this, the application tries to deter-
mine the set of default facets for the calendar. (How the application does this for
an unknown calendar is beyond the scope of this paper. One possibility, alluded
to at the end of  43, is that the calendar  is somehow associated with a 
which can be fetched to yield information about the calendar. Another possibility
is to allow documents to contain this information, perhaps in a header declaring
the calendar.)

For the purpose of this specification, L(c, d) is a function that returns the
facet of class c applying to the date d. is will either be a known facet listed in the
date’s style, or one of the calendar’s default facets. (A future revision of  38
may provide a way of specifying default facets in a document header that override
the calendar’s defaults [2].) If such a facet cannot be found, for example if the
calendar’s default style cannot be determined or if one those facets is unknown,
L returns null-facet, which is defined below.

Similarly, F(f, d, s) is a function that returns the string s formaed in a
manner specific to facet f in the context of formaing the date d. In an applica-
tion wrien in an object-oriented language, F might be a virtual function
on facets, called with parameters d, s and returning a string. Each facet will define
the behaviour of formaing it, though laitude is given for applications to cus-
tomise the specified behaviour to allow for localisation, user preferences, context,
and the display capabilities of the application. Finally, I(c, d, s) is short-
hand for F(L(c, d), d, s).

e formaed version of a date, d, is I(root, d, d). It is suggested that, if
a date is expressed in a calendar other than the document’s default calendar, the
calendar is noted if there is scope of confusion. (In general, there is likely to be
scope for confusion between two calendars having the same default style.)

4

4 Facet definitions

4.1 null-facet

is facet is referred to as null-facet in this specification, but in many respects
it is not a real facet as it has no associated class and cannot therefore be specified
explicitly, whether on a date or as part of a calendar’s default style. Support for
this facet is mandatory.

F(null-facet, d, s) is only called as a last resort when unable to format
the string s. All it can do is to return the string s, perhaps marked up in some
application-defined way to indicate that it has not been understood. e facet
might apply different formaing depending on context in which it was called.

4.2 year-and-recurring

Most world calendars are likely to use a date representation consisting of a num-
ber representing the year followed by further components that represent subdivi-
sions of a year. (is is not required and, for example, a Mayan calendar might use
five componets, the first two of which are the number of b’ak’tuns and k’atuns,
units of 400 and 20 tuns or years, respectively. Such a calendar will generally not
be able to use this facet as its root-class facet. Nevertheless, it is anticipated that
virtually all calendars will use this facet, and there will be lile need for additional
root-class facets.) For calendars with a year-like-quantity as the highest-order
component, this facet provides a way of decoupling the formaing of the its year
and recurring part, which are handled by the facet classes of those names.

F(year-and-recurring, d, s) splits the string s on its first ‘-’ to get two
parts (y, r) neither of which contains the ‘-’ that separated the parts, although
r may contain other instances of ‘-’. If s contains no ‘-’ then y = s and r is
undefined. Leading 0s may be trimmed from y. e facet then formats y us-
ing I(year, d, y), and r is formaed with I(recurring, d, r) if r
is defined. e formaed versions of y and r are concatenated in an application-
defined order, perhapswith additional spacing, punctuation ormarkup. e result
of the concatenation is returned.

4.3 common-era

is facet provides a simple formaing of a year, with counting starting at from
1 . e present definition assumes the year is serialised counting from 1  (as
is the case in with proposals for the Gregorian [3] and Julian calendars [4]).

5

F(common-era, d, s) does lile more than return s. It may append or
prepend an abbreviation like ‘’ or ‘’. If the application is localised for lan-
guage that uses non-Arabic numeral (e.g. Bengali), then the application may need
to transliterate the year number into the appropriate numerals.

4.4 day-in-month

is facet provides formaing of the recurring part of a date in the common case
that it represented by amonth and day, and the day is to be formaed as a number.

F(day-in-month, d, s) splits the string s on its last ‘-’ to get two parts
(m, a) neither of which contains the ‘-’ that separated the parts, althoughmmay
(but generally won’t) contain other instances of ‘-’. Leading 0s may be trimmed
from s and, if it’s defined, a. If s has no ‘-’ then m = s and a is undefined. Un-
less the application requires a numeric representation of the month, it formats m
using I(month-name, d,m). If a is defined, the application may do addi-
tional formaing such as appending an ordinal suffix (e.g. -st, -nd, -rd or -th in
English) or transliteration. e formaed versions of m and a are concatenated
in an application-defined order, perhaps with additional spacing, punctuation or
markup, and the result of the concatenation is returned.

4.5 western-month

is facet formats the month names used by calendars derived from the ancient
Roman calendar — January, February, March, April, May, June, July, August,
September, October, November and December — and their variants in other lan-
guages. (is paper does not propose separate month-name-class facets for each
language.)

F(western-month, d, s) treats s as an integer month number and usees
it to look up the corresponding month name. e application may translate the
month name into the user’s language, and might abbreviate or format the month
in an application-defined manner. If s is not an integer, the facet may show an
error or delegate formaing to null-facet.

6

5 Examples

5.1 The Swedish calendar of 1700–1712

is calendar is the same as the Julian calendar except that 1700 was not a leap
year and 1712 was a ‘doubly-leap’ year in which February had 30 days. For that
twelve year peiod, Sweden was one day ahead of those parts of Europe that were
still on the Julian calendar, and ten behind those that were already on the Gre-
gorian calendar. It is assumed that this calendar will have same default style as
the Gregorian or Julian calendar. How should the Swedish date 1712-02-12 be
formaed?

e root-class facet is year-and-recurring which splits the date into the year,
1712, and recurring part, 02-30. e year-class facet is common-year which
might produce ‘1712 ’. e recurring-class facet is day-in-month which
splits the recurring part into a month, 02, and a day, 30. e day-in-month looks
upmonth 2 and returns ‘Feb’. e day-in-month concatenates the formaed day
and month to give ‘30 Feb’, to which year-and-recurring appends the year
resulting in ‘30 Feb 1712 ’. At no point does any part of the process try to
validate the date, so it never notices that ‘30 Feb’ is a rather unusual date, even
though it is valid in this particular year of this particular calendar. (Validation of
a date can only be done with detailed knowledge of the calendar, which in this
example the application does not have.)

5.2 Years starting on Lady Day

e example of years starting on Lady Day, 25 March, was used quite extensively
in  43 which suggested defining a lady-day facet. It would be of the year
class.

In this example, F(lady-day, d, s) would need to inspect the full date, d,
to determine whether it was before or aer 25 March, or whether it was a reduced
representation spanning the year change. is could be done by constructing the
month representation, m, by appending ‘-03’ to s, which is the year. If d = m
or d = s then the facet is formaing a reduced representation spanning the year
change and needs to return a dual-year for s−1 and s. If it’s not a reduced repre-
sentation, then the first day of the year, f , is constructed by appending ‘-03-25’
to s. If d < f , then the either a dual-year (s− 1 and s) is needed or s− 1 can be
suffixed with ‘()’, as the application vendor prefers. Otherwise, the year is s.

To give some concrete examples, the lady-day facet might format the year of
1710-03 as ‘1709/10’, the year of 1710-03-13 as ‘1709/10’ or ‘1709 ()’, and the
year of 1710-03-29 as ‘1710’.

7

5.3 The Old Icelandic calendar

is calendar had twelve months of 30 days, with an intercalary period called
Sumarauki inserted aer the seventh month. is either had 4 or 11 days, de-
pending on whether it was a leap year. e representation would probably treat
this as an extra month effectively giving 13 months. Such a calendar would need
a custom icelandic-month facet of class month-name; very likely a general-
purpose genealogy application would not support this facet.

e day and month ‘2 Sólmánuðr’ might be represented in some year with the
recurring part 07-02. e day-in-month facet cannot find a known facet of the
month-name class and so falls back to using null-facet. at might return the
month giving ‘2 7’ for the recurring part, which is not ideal. But the application
is free to do beer. It might be able to format the month number differently to
indicate that it is unstyled: ‘2 "07"’. Or perhaps if null-facet determines that
it is acting as a month-name-class facet, it can convert the month to a Roman
numeral: ‘2 VII’.

5.4 The Hebrew calendar

e Hebrew calendar has twelve or thirteen months in the year, depending on
whether it is a leap year. e name of the twelh month of the year depends on
whether it is a leap year or not: in a normal year it is called Adar ,(אֲדָר) but in
leap year it is Adar  א׳) (אֲדָר and is followed by Adar  ב׳) .(אֲדָר is is an example
where the facet of the month-name class needs to access the full date (the d in
each call to F) to determine whether it is a leap year. It can only do this if it
understands the calendar. A hebrew-month facet therefore cannot be used with
an arbitrary calendar.

5.5 Roman reckoning of days

e roman facet discussed in  43 is of the recurring class as it affects the
formaing of days. As with the previous example of hebrew-month, the roman
facet needs access to the full date to determine whether it is a leap year. is is
necessary in order to know whether 02-25 should be a.d.  Kal Mar (as it is in
a leap year) or a.d.  Kal Mar (in non-leap years). is means that the Roman
reckoning of days can only be applied to calendars that the facet understands.
When ths facet invokes the month-name-class facet, the month number it uses
will not necessarily be the one found in the date. For dates between the Ides and
Kalends, it will be onemore than themonth number in the representation (modulo
12), as in the example just given.

8

6 Arbitrary epochs

A major use of year-class facets is anticipated to be in defining an year-num-
bering scheme and stating when in the year the year increments. Such a facet
is referred to as an epoch facet. e common-era facet is an epoch facet, as are
the example lady-day and anno-hegirae facets. (e regnal year example in
 43 is a year-class facet that is not an epoch facet.)

Facet name Epoch Usual suffix
common-era 0001-01-01 
lady-day 0001-03-25  ()
anno-hegirae 0585-03-01 

e epoch is defined as the representation of the first day in the year numbered 1.
Once the epoch facet is applied to particular date, the epoch is interpreed as a
date in that calendar. is allows the lady-day facet to represent years counted
from 25 March, irrespective of whether it is applied to a Julian or Gregorian date
(or, indeed, a Swedish one). If the epoch is not a valid date in the calendar in
question, then the facet cannot be applied to that calendar.

e epoch for anno-hegirae, as used by the Rumi calendar, is listed as 585 ,
even though it is nominally a number of years since 622 . is is because,
for the first six hundred years, counting was done using a lunar calendar with
years that were, on average, rather longer than the Julian year. By the thirteenth
century , the difference between the years anno domini and anno hegirae was
584 years, meaning that 1  of the proleptic Rumi calendar started during 585 .
e 03-01 simply reflects that the year began on 1 March.

An algorithm is given below for calculating the year with respect to an arbitrary
epoch in an arbitrary calendar. e common-era and lady-day facets should
behave the same if they are formaed using this algorithm as with the special-
case algorithms in §4.3 and §5.2, respectively. It is hoped that if applications use
a general epoch algorithm, they can format dates using arbitrary epoch facets,
providing they are able to discover the associated epoch and are provided with a
hint as to an appropriate suffix to use.

At present this mechanism does not cope with epochs that start before the year
0000 in the calendar representation. is is relevant to several common calendars
including the Hebrew calendar which expresses years anno mundi, with an epoch
in 3761  is paper does not consider how to handle such epochs. However it
is noted that if the representation of dates is extended to somehow allow negative
years, this will be solved.

9

6.1 Algorithm

If f is an epoch facet with an epoch of e, then F(f, d, s) is defined as follows.
If d < e then the date being formaed predates the epoch, and the application
may show an error, if not it displays the date in some application-defined manner.
e epoch year and epoch’s recurring part, (y, r), are extracted from e by spliing
it at the first ‘-’.

It is first necessary to test whether the full date, d, is a reduced representation
spanning the start of a year. For every instance of a ‘-’ in r, the substring pre-
ceding the ‘-’ is considered. Call this substring n. A string, m, is formed by the
concatenation of s, ‘-’ and n. If at any point d = m, the date is reduced repre-
sentation spanning the start of a year. If so, then a dual-year format is needed for
(s − y, s − y + 1). Otherwise, continue on to the next ‘-’ in r until there are no
more.

e dual-year format of (x, y) is typically done by taking x, and following it by a
separator such as ‘/’. If x and y share a common leading substring, that substring
may be removed from y before y is appended to the result.

If it’s not a reduced representation, then the first day of the year, f , is constructed
by concatenating s, ‘-’ and r. If d < f , then the year to be formaed is s − y;
otherwise it is s− y + 1.

Whether it was a single or a dual year, a suffix (such as the usual one provided
in the table) may be appended or prepended, and any transliteration of numerals
required for localisation can be done.

7 Concluding remarks

e proposals in this paper can be considered as three separate proposals, each
dependent on the earlier ones. e first was the introduction of the year and
recurring facet classes (and the associated common-era and day-in facets) as
a vocabulary for use in defining third-party facets. With just this part, the facets
are lile more than opaque tags each of which needs application support.

e second proposal was the use of facet and class mechansim into a model for
the formaing of dates in arbitrary calendars. is completes the separation of
the formaing of a calendar from its mechanics (i.e. the details of how many days
are in which months, and so on). ere is no good reason why an application
should need to understand about the unqiue status of Sweden’s 30 Feb 1712 just
so that it can format it.

10

e third part was the mechanism for defining epoch facets. An application sup-
porting this is not only able to handle some unfamiliar calendars, but also some
unfamiliar facets. is paper has not discussed how an application should go
about discovering the basic details of unknown calendars or facets, but the use of
QNames as calendar s (and presumably facet s) suggested in  37 results
in a  being associated with every calendar and facet [5]. An application could
use this  to fetch information about unknown calendars and facets.

It is easy to see how many month-name-class facets are lile more than lookup
tables for month names, and that with such an discovery protocol in place, un-
known facets of this type could be handled similarly to unknown epoch facets.

References

[1] Richard Smith, 2013, Proposal to add style to the wholly-numeric representation
of dates in  13 ( 43), http://fhiso.org/files/cfp/cfps43.pdf

[2] Richard Smith, 2013, Proposal for compound calendars to resolve a difficulty
with default calendars ( 38), http://fhiso.org/files/cfp/cfps38.
pdf

[3] Tony Proctor, 2013, Proposal to Accommodate Gregorian Dates using aModified
 8601 ( 17), http://fhiso.org/files/cfp/cfps17.pdf

[4] Richard Smith, 2013, Proposal to support the Julian calendar similarly to  17
( 44), http://fhiso.org/files/cfp/cfps44.pdf

[5] Richard Smith, 2013, Proposal for a scalable extensibility mechanism ( 37),
http://fhiso.org/files/cfp/cfps37.pdf

11

http://fhiso.org/files/cfp/cfps43.pdf
http://fhiso.org/files/cfp/cfps38.pdf
http://fhiso.org/files/cfp/cfps38.pdf
http://fhiso.org/files/cfp/cfps17.pdf
http://fhiso.org/files/cfp/cfps44.pdf
http://fhiso.org/files/cfp/cfps37.pdf

