fhiso’

Simple Triples Discovery Mechanism

16 March 2018

Editorial note — This is an first public draft of a standard defining a simple, general-
purpose discovery mechanism. This document is not endorsed by the FHISO membership,
and may be updated, replaced or obsoleted by other documents at any time.

The public tsc-public@fhiso.org mailing list is the preferred place for comments, discussion
and other feedback on this draft.

Latest public version: https://fhiso.org/TR/triples-discovery
This version: https://fhiso.org/TR/triples-discovery-20180316

FHISO’s Simple Triples Discovery Mechanism (or Triples Discovery) provides a way for internet-
connected applications to attempt to gain information on any unfamiliar terms they may encounter,
allow these terms to be better processed. Unknown terms can appear in data as a result of third-party
extensions being used, when data conforming to a new standard is read by an older application, or
if data conforming to other standards is present.

In Triples Discovery, an application makes an HTTP request to the term name IRI with an Accept
header requesting a response in the N-Triples format. The details of these HTTP requests and their
responses are given in §2. The N-Triples format is described in §3; it is extremely simple to parse,
and is supported in various libraries by virtue of being a small subset of the more popular Turtle
serialisation format.

1 Conventions used

Where this standard gives a specific technical meaning to a word or phrase, that word or phrase is
formatted in bold text in its initial definition, and in italics when used elsewhere. The key words MusT,
MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT, RECOMMENDED, NOT RECOMMENDED,
MAY and OPTIONAL in this standard are to be interpreted as described in [RFC 2119].

An application is conformant with this standard if and only if it obeys all the requirements and
prohibitions contained in this document, as indicated by use of the words MUST, MUST NOT, REQUIRED,
SHALL and SHALL NoOT, and the relevant parts of its normative references. Standards referencing this
standard MusT NOT loosen any of the requirements and prohibitions made by this standard, nor place
additional requirements or prohibitions on the constructs defined herein.

https://tech.fhiso.org/tsc-public
https://tools.ietf.org/html/rfc2119

Simple Triples Discovery Mechanism

Note — Derived standards are not allowed to add or remove requirements or prohibitions
on the facilities defined herein so as to preserve interoperability between applications. Data
generated by one conformant application must always be acceptable to another conformant
application, regardless of what additional standards each may conform to.

If a conformant application encounters data that does not conform to this standard, it MAY issue a
warning or error message, and MAY terminate processing of the document or data fragment.

This standard depends on FHISO’s Basic Concepts for Genealogical Standards standard. To be con-
formant with this standard, an application MusT also be conformant with [Basic Concepts]. Concepts
defined in that standard are used here without further definition.

Note — In particular, precise definitions of character, string, whitespace, language-tagged
string, term, term name, discovery, namespace, namespace name, prefix notation, prefix,
class, class name, type, property, property name, property value, property term, range, re-
quired property, datatype, datatype name, subtype, abstract datatype and language-tagged
datatype are given in [Basic Concepts].

Indented text in grey or coloured boxes does not form a normative part of this standard, and is la-
belled as either an example or a note.

Editorial note— Editorial notes, such as this, are used to record outstanding issues, or points
where there is not yet consensus; they will be resolved and removed for the final standard.
Examples and notes will be retained in the standard.

In some of the examples in this standard, long lines are broken across multiple lines to improve
readability. Where this has occurred, the continuation lines are prefixed with a “—” to mark the
continuation. To get the actual text, this character needs to be removed, and the continuation line
appended to the previous line with a single space character (U+0020) separating the previous line’s
content from the continuation line’s.

The grammar given here uses the form of EBNF notation defined in §6 of [XML], except that no sig-
nificance is attached to the capitalisation of grammar symbols. Conforming applications MUST NOT
generate data not conforming to the syntax given here, but non-conforming syntax MAY be accepted
and processed by a conforming application in an implementation-defined manner.

This standard uses prefix notation when discussing specific terms. The following prefix bindings are
assumed in this standard:

rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.0rg/2000/01/rdf-schema#

xsd http://www.w3.0rg/2001/XMLSchema#

types https://terms.fhiso.org/types/

cev https://terms.fhiso.org/sources/

https://www.w3.org/TR/xml11/

Simple Triples Discovery Mechanism

Note — The particular prefix assigned above have no relevance outside this standard docu-
ment as prefix notation is not used in the formal data model defined by this standard. This
notation is simply a notational convenience to make the standard easier to read. The cev
prefix is only used in examples.

2 HTTP requests and responses

Discovery is defined in §4.1 of [Basic Concepts] as being when an HTTP request to the term name
IRI, made with an appropriate Accept header, results in a particular machine-readable format. This
section defines how those HTTP requests and responses are made in Triples Discovery.

When an application opts to carry out discovery using this Triples Discovery mechanism on a term
whose term name IRI has an http or https scheme, it sHALL make an HTTP GET request to the URI
that results from the conversion of the term name IRI to a URI per §4.1 of [RFC 3987].

Note — This standard does not specify how Triples Discovery works with terms using other
IRI schemes, and the use of other schemes is NOT RECOMMENDED by §4 of [Basic Concepts].

The IRI to which the initial GET request is made is called the discovery IRI. It is the term name IRI
with any fragment component removed.

Example — The term name https://example.com/events#Birth contains a fragment
component, therefore its discovery IRI is https://example.com/events.

The GET request sHouLD have an Accept header that is well-formed according to §5.3.2 of [RFC 7231],
and which references the N-Triples media type, “application/n-triples”. The request’s Accept
header mAy alternatively or additionally reference the media types of one of the alternative RDF
formats described in §3.3 of this standard, but conformant servers need not support those formats.

If the discovery IRI is not a known term name and is not an IRI used for another purpose, it is
RECOMMENDED that servers issue a 404 “Not Found” response. Applications MUSsT NOT consider a 404
or other HTTP error response to mean the term is invalid.

Note — As it is only RECOMMENDED and not REQUIRED that parties defining new terms
make information available online at the term name IRI, a 404 response can also mean the
provider has chosen not to follow this recommendation. This might occur when a term is
no longer supported by the organisation which originally defined it, but is still in use.

After any initial redirections, a conformant server sHoOULD use the algorithm in §5.3 of [RFC 7231] to
consider each of those media types listed in the Accept header which the server supports, including
any documentation formats or other discovery formats outside the scope of this standard, to select
the media type of the resource that will be served. If the server supports none of the listed media
types, it sHouLD send a 406 “Not Acceptable” response; otherwise, if the selected media type is the N-
Triples media type or a supported alternative type from §3.3, the server sHouLD continue with Triples

Simple Triples Discovery Mechanism

Discovery as outlined here. If the Accept header was precisely “application/n-triples” then a
conformant server MUsT continue with Triples Discovery.

Note — It is only RECOMMENDED and not REQUIRED that parties defining new terms arrange
for HTTP content negotiation to be performed properly as described above and in [RFC
7231]. The reason for this is that some popular web servers do not make necessary config-
uration straightforward, and much of the published advice on the subject is to use basic
pattern matching on Accept headers rather than proper content negotiation. An promi-
nent example of such advice is [SWBP Vocab Pub], published as best practice by the World
Wide Web Consortium. Recipes 3 and 4 from this can result in certain complex Accept
headers being parsed contrary to [RFC 7231]; nevertheless, this standard allows server ad-
ministrators to follow [SWBP Vocab Pub] while remaining conformant with this standard.

Example — An application might send a GET request with the following Accept header:
Accept: application/x-discovery; q=0.9, application/n-triples

This is well-formed according to §5.3.2 of [REC 7231]. The gq=0.9 in the Accept header
is a quality value attached to the preceding media type. It indicates that the hypothetical
x-discovery format is less preferred than N-Triples which by default has a quality value
of 1.0. Placing a less preferred format before the preferred format is unorthodox but not
prohibited.

A server that supports both the x-discovery format and N-Triples sHoULD provide an N-
Triples description of the term per this standard, but because the Accept header was not ex-
actly “application/n-triples?”, this is not REQUIRED. If the server uses some form of pat-
tern matching on the Accept header and concludes that x-discovery must be preferred
as it is listed first, this behaviour, while incorrect, is still conformant with this standard.

Except when the discovery IRI is a namespace name as defined in §4.2 of [Basic Concepts], a confor-
mant server sHALL issue an HTTP redirect response with a Location header containing the URL of a
resource containing a description of the discovery term in the selected format including the required
triples given in §4. This redirect SHOULD use a 303 “See Other” redirect, and MUST NOT be a permanent
redirect such as a 301 “Moved Permanently”.

Note — A redirect is REQUIRED when the discovery IRI is a term name to avoid confusing the
term name with the document containing its definition, which is found at the post-redirect
URL. Neither this standard nor [Basic Concepts] currently defines properties for use with
documents, but future FHISO standards might, and servers conforming to this standard
MAY include in their response RDF triples outside the scope of this standard, such as [Dublin
Core] metadata about the document. Without this requirement, such metadata would be
indistinguishable from properties about the term subject to discovery.

Simple Triples Discovery Mechanism

Example — Suppose an application wants to perform discovery on a hypothetical
https://example.com/events/Baptism term. An application wanting to maximise
the likelihood of a response from any conformant server might make the following request:

GET /events/Baptism HTTP/1.1
Host: example.com
Accept: application/n-triples

This standard does not specifically require support for HTTP/1.1, but it is currently the
most widely used version of HTTP and servers are strongly encouraged to support it. If
the server does, as the Accept header is exactly “application/n-triples”, a conformant
server MusT conclude this is a request for an N-Triples representation of the term. And as
the discovery IRI is the term name, it MUsT respond with a redirect:

HTTP/1.1 303 See Other
Location: https://example.com/events/Baptism.n3
Vary: Accept

In this case the redirect is to the original IRI but with .n3 appended, however the actual
choice of IRI is up to the party defining the term and running the example.com web server.
When a server’s response is dependent on the contents of an Accept header, §7.1.4 of [RFC
7231] says that this sHouLD be recorded in a Vary header, as it is in this example. In practice
other headers are likely to be present too, probably including a Date header containing the
current date and time, and a Server header identifying the web server software; these
have been omitted for brevity.

The application would normally then make a second HTTP request to follow the redirect:

GET /events/Baptism.n3 HTTP/1.1
Host: example.com
Accept: application/n-triples

This request uses the same Accept header as the first, as HTTP redirects contain no infor-
mation about the MIME type of the destination resource, so at this point the application
does not know whether the server has done HTTP content negotiation.

The server’s response to this request should be an N-Triples file containing information
about the Baptism term.

HTTP/1.1 200 OK
Content-Type: application/n-triples

<https://example.com/events/Baptism>
— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
— <https://example.com/types/Event> .

The meaning of the N-Triples in the request body is described in §3.

Simple Triples Discovery Mechanism

Conformant servers MAY issue additional redirects during the Triples Discovery process, including 301
“Moved Permanently” redirects. Applications MusT NOT infer anything from the use of redirects: in
particular, if one term name IRI permanently redirects to another term name IR], applications MusT
NOT assume the terms are synonymous.

Server support for Triples Discovery on namespace names is OPTIONAL, and a conformant server which
opts not to support it must not generate a response in N-Triples or an alternative media type from §3.3,
and sHoOULD instead send a 406 “Not Acceptable” or 404 “Not Found” response, depending whether
or not documentation of the namespace is available in an alternative format. If Triples Discovery of
namespaces is supported and if the discovery IRI is a namespace name, a redirect is OPTIONAL, but
response MUST contain the required triples given in §4.

Conformant servers MAY support any version of HTTP and any additional HTTP features.

Example — Conditional HTTP requests per [RFC 7232] are an example of a feature that the
operators of conformant servers MAY opt to support. Applications MAY repeat discovery on
certain terms after some time has elapsed, and include an If-Modified-Since header in
the request. A server that has opted to support conditional requests would respond with a
304 “Not Modified” if the results of discovery have not changed. If the results have changed,
or if the server cannot determine whether they have changed, or if the server does not
support conditional requests of this form, it would produce a 200 “OK” response containing
triples describing the term.

3 N-Triples syntax

N-Triples is a line-based format. Each non-empty line contains a triple, which is a sequence of three
elements separated by whitespace, and ending with a “.” (U+002E). In the simplest case, each of the
three elements is a term written as an absolute IRI enclosed in “<” and “>” (U+003C and U+003E).
These three elements are known as the subject, predicate and object of the triple, and are used in
this discovery mechanism to record the properties of a term.

The subject of the triple sHALL be the subject of the property: that is, the term being described. The
predicate sHALL be the property name of the property, and the object SHALL be its property value.

Example — The following is one triple in the N-Triples format, which is a type triple:

<https://example.com/types/Date>
— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
— <http://www.w3.0rg/2000/01/rdf-schema#Datatype> .

To be valid N-Triples, the triple MmusT be on a single line, and there sHOULD be exactly one
space character (U+0020) separating each pair of IRIs. The “.” (U+002E) at the end of the
line is a REQUIRED part of the N-Triples syntax to mark the end of a triple.

Simple Triples Discovery Mechanism

In this example, the subject is a hypothetical Date term, the predicate is rdf: type and the
object is rdfs:Datatype. This triple is therefore describing the Date term and saying that
the value of its rdf: type property is rdfs:Datatype: i.e. that this Date term is a datatype.

If the predicate is rdf : type the triple is known as a type triple.

Note — Type triples are used in Triples Discovery as a minimal way of noting the existence
of a term.

The details of this syntax are defined in the [N-Triples] standard, and a triple must match the triple
grammar production given in §7 of [N-Triples].

Conformant servers MUsT produce N-Triples in the canonical form of N-Triples defined in §4 of [N-
Triples]. A conformant application MusT support the canonical form of N-Triples, and MAY support
more of the full syntax of N-Triples. If a conformant application encounters an N-Triples file using
unsupported features, it MAY discard the whole file or MAY discard the triple containing the feature.

Note — Canonical N-Triples is a form of N-Triples which does not allow arbitrary whites-
pace, comments or certain escape constructs. This results in a further simplification to the
parsing of N-Triples by removing alternative ways of serialisation the same triple. It is rel-
atively rare to encounter N-Triples data which is not in its canonical form.

Note — For convenience, the triple production and some related productions are repro-
duced here from §7 of [N-Triples]:

triple ::= subject predicate object '.'
subject = IRIREF | BLANK_NODE_LABEL
predicate = IRIREF
object = IRIREF | BLANK_NODE_LABEL | literal
IRIREF = '<' ([Mx00-#x20<>"{}|A"\]1* | UCHAR)* '>'
UCHAR = '\u' HEX HEX HEX HEX
| '\U' HEX HEX HEX HEX HEX HEX HEX HEX
HEX ::= [0-91 | [A-F]1 | [a-f]

The UCHAR escape sequences are not permitted in Canonical N-Triples, and therefore sup-
port for them is opTIONAL in this standard. Unicode characters are written directly, without
the need for any escaping, in Canonical N-Triples.

Because this standard permits conformant applications to parse non-conformant data, and
because UCHAR support is OPTIONAL, an application may simply parse any sequence of non-
whitespace characters between “<” and “>” as an IRI without validating it against the IRIREF
production.

Whitespace handling is underspecified in the full N-Triples syntax. This is the subject of
erratum 24 in [RDF Errata] and is likely to be addressed in a future version of [N-Triples],

Simple Triples Discovery Mechanism

most probably by allowing more liberal use of whitespace. In Canonical N-Triples, a single
space character (U+0020) is required after each of the three elements of the triple, thus:

triple ::= subject #x20 predicate #x20 object #x20 '.'

Triples are separated by [#xD#xA]+, which allows blank lines, and permits all the major
styles of line endings.

3.1 Literals

Instead of being a term, the object of a triple MAY alternatively be a literal, which has a string value
instead of an IRI, and is serialised in double quotes (U+0022). Backslashes (U+005C) musT be used to
escape any double quotes, backslashes, line feeds (U+000A) or carriage returns (U+000D) that appear
literally in the string. If the predicate of the triple is a property term whose range is a datatype, then
the object of the triple sHALL be a literal rather than a term; otherwise the object of the triple SHALL
be a term.

Example — If discovery is performed on a datatype name, the resulting N-Triples sHOULD
include its type and pattern, as specified using the rdf : type and types : pattern properties
terms. For a hypothetical date type, this might be as follows:

<https://example.com/types/Date>
— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
— <http://www.w3.0rg/2000/01/rdf-schema#Datatype> .
<https://example.com/types/Date>
— <https://terms.fhiso.org/types/pattern>
— "[0-91{4}-[0-91{2}-[0-9]1{2}"

The range of the rdf:type property term is rdfs:Datatype which is a class, and there-
fore the property value is serialised in N-Triples as a term; however the range of the
types:pattern property term is types:Pattern which is a datatype, and therefore its
property value is serialised as a literal.

In N-Triples, a literal may optionally be followed by either a language tag or a datatype name, but not
both. If either of these is present, it is placed after the quoted string in the serialisation: the language
tag if present is preceded by an “@” (U+0040), and a datatype name is enclosed in “<” and “>” (U+003C
and U+003E) and preceded by “AA” (U+005E twice).

Example —

<https://example.com/types/YearMonth>

— <https://terms.fhiso.org/types/pattern>

— "[0-9]{4}-[0-9]1{2}"AA<https://terms.fhiso.org/types/Pattern> .
<https://example.com/types/YearMonth>

— <http://www.w3.0rg/2000/01/rdf-schema#label>

— "Jahr und Monat"@de .

Simple Triples Discovery Mechanism

The object of the first of these triplesis a literal tagged with a datatype name, types :Pattern.
The object of the second triple is a literal with a language tag, de representing German.

A literal followed by a language tag is used to serialise a property value which is a language-tagged
string. If the predicate of the triple is a property term whose range is a language-tagged datatype, then
the object of the triple sHALL be a literal with a language tag.

Note — N-Triples has no mechanism for stating a default language tag, so the language tag
MUST NOT be omitted when serialising a language-tagged string.

The use of literals with datatype names is NOT RECOMMENDED when N-Triples is used in Triples Dis-
covery. Conformant applications MUsT be able to parse literals containing them, but Mmay ignore any
datatype names encountered and parse the literal as if it were absent.

Note — Applications are REQUIRED be able to parse literals containing datatype names so
that they can parse N-Triples data that was not generated specifically for the purpose of
FHISO’s Triples Discovery mechanism.

Editorial note — Because Triples Discovery is only intended as a discovery mechanism for
obtaining the definition of a term, it only need accommodate properties that might reason-
ably be defined on terms. At present this does not include properties with polymorphic
datatypes, which is when a datatype name might be needed. For this reason their use is NOT
RECOMMENDED. If this mechanism is generalised in the future and used for genealogical
data, rather than just metadata on terms, it will be necessary to support language tags and
datatype names properly.

Conformant servers MUsT NOT produce triples whose object is a literal with a datatype name unless the
datatype is either the range of the predicate of the triple or is a subtype of the range of the predicate.
Conformant servers also MUusT NOT produce triples whose object is a literal with a datatype name nam-
ing a abstract datatype. Applications MAY discard any triple not conforming to these requirement.

Example — The previous example included the following triple:

<https://example.com/types/YearMonth>
— <https://terms.fhiso.org/types/pattern>
— "[0-91{4}-[0-9]1{2}"AA<https://terms.fhiso.org/types/Pattern> .

A conformant server may generate this, even though the use of the datatype name is NOT
RECOMMENDED. This is because the range of the types:pattern property termis defined to
be types:Pattern, whichisthe datatype nameused, and types : Patternisnotan abstract
datatype.

Note — Literals match the literal grammar production in §7 of [N-Triples] which is re-
produced here for convenience:

Simple Triples Discovery Mechanism

literal

STRING_LITERAL_QUOTE

ECHAR
LANGTAG

STRING_LITERAL_QUOTE
('AN" IRIREF | LANGTAG)?
YUY ([MEX22#X5CHXA#XD]
| ECHAR | UCHAR)* '™
"\'" [thbnrf"'\]
'@' [a-zA-Z]1+ ('-' [a-zA-Z0-9]+)*

The ECHAR production provides a means of escaping characters to appear in a literal:

tab U+0009
backspace U+0008
line feed U+000A
carriage return U+000D
form feed U+000C
double quote U+0022
single quote U+0027
backslash U+005C

\t
\b
\n
\r
\f
\"
X
A\

Canonical N-Triples only allows the use of \ ", \\, \r and \n. Support for the other escapes,
like the UCHAR escape mechanism, is OPTIONAL.

3.2 Blank nodes

N-Triples also allows the subject or object of a triple to be a blank node, which have serialisations in
N-Triples beginning with “_:” (U+005F, U+003A). This Triples Discovery mechanism makes no use of
blank nodes and conformant applications SHOULD ignore any triples containing them.

Example — The following triple has a blank node as its object and sHOULD be ignored.

<https://example.com/types/YearMonth>
— <http://www.w3.0rg/2000/01/rdf-schema#isDefinedBy>

— 1

Note — A future FHISO standard might use blank nodes to represent more complicated
property values that cannot conveniently be represented by a term or a literal. For this
reason, this standard does not prohibit conformant servers from generating triples using

blank nodes.

Editorial note — FHISO recognises that Triples Discovery will need to be updated to in-
clude support for list-valued properties. RDF supports lists in the form of the rdf:List
class, and while introducing rdf:List is appealing and potentially solves various other
problems, it causes implementation difficulties in Triples Discovery. This is because, for
simplicity’s sake, we use N-Triples as the serialisation format, and, uniquely among the
common RDF serialisation syntaxes, N-Triples lacks any clean syntax for representing an

10

Simple Triples Discovery Mechanism

rdf:List. Instead, the N-Triples representation would involve a Lisp-like representation
of the rdf:List with a series of blank nodes:

types:Date owl:unionOf _:1

:1 rdf:type rdf:List

rdf:first types:AbstractDate .
rdf:rest _:2 .

rdf:type rdf:List

rdf:first rdf:langString .
rdf:rest rdf:nil .

N NN = =

To support this, support for blank nodes and the rdf:first, rdf:rest and rdf:nil con-
structs would have to become REQUIRED. This adds some significant complexity to the im-
plementation, as the implementation would need to recognise and ignore malformed uses
of these constructs.

For comparison, the same data expressed in Turtle (which has native support for lists)
would be:

types:Data owl:unionOf (types:AbstractDate rdf:langString)

Clearly this syntax is much cleaner; it also avoids the need for applications to support blank
nodes and the rdf:first, rdf:rest and rdf:nil constructs. Turtle (and RDF/XML and
JSON-LD, the other main formats) are a somewhat harder format to parse than N-Triples.
There are plenty of libraries that will parse these formats, but this standard was designed
to make parsing easy so that a library wasn’t needed. Also, the interface to many parsing
libraries is a stream of triples which have lists expanded into their rdf:first, rdf:rest
and rdf:nil equivalents.

Making syntactic support for blank nodes opTIONAL (Whether using the _: 1 syntax or the
[1 syntax) would make writing a parser a bit simpler. Unfortunately, other features cannot
be made opTIONAL so readily, as dropping them would make it hard to parse information
on existing vocabularies, or to use standard tools to create the discovery files served by
conformant servers.

This issue needs resolving before list-valued properties can be added to [Basic Concepts].

3.3 _Other formats
Note — This section explains how alternative RDF formats may be used instead of N-Triples.
Support for any other format is OPTIONAL.

N-Triples is not the only serialisation format for representing RDF data, nor is it the most commonly
used.

Note — Originally the only serialisation format for RDF was [RDF/XML], and despite its
excessive verbosity, this format remains popular for compatibility with older datasets and
applications. A more modern format is [Turtle] which is defined to be easily written and

11

Simple Triples Discovery Mechanism

read by a human; it is a superset of N-Triples, though not as trivial to parse. Many RDF
frameworks support these as well as N-Triples, and can convert between formats.

A conformant server may make information about terms available in other RDF formats too. If a
server does so, it SHOULD provide the same information in these other RDF formats as it provides is
N-Triples, and musT ensure that the information made available in any other supported RDF formats
includes the required triples, as given in §4. A conformant server musT NOT only make information
available in an RDF format other than N-Triples.

A conformant application Mmay request data in other RDF formats, and may request these formats in
preference to or before N-Triples, but must also support N-Triples. It sHALL parse data in other RDF
formats as if by converting them to N-Triples and parsing that per this standard.

Note — In practice, such an application would likely use an RDF framework to parse all
the supported RDF formats, N-Triples included, and then process the parsed triples that the
framework provides.

4 Required triples

When discovery is carried out on an IRI (the discovery IRI) which is a known term name (including
the namespace name, as defined in §4.2 of [Basic Concepts], if discovery on namespaces is supported),
a conformant server sHALL ensure that the response includes certain required triples. The response
MAY contain other triples in addition.

If the discovery IRI is a namespace name and if discovery of namespace names is supported, the set of
required triples sHALL be the set of type triples for every term whose namespace name is the discovery
IRI.

Note — According to §2, discovery on a namespace name is opTIONAL. However, if discovery
is supported the required triples for such discovery is the full set of terms in the namespace.
Thus a conformant server musT respond to a namespace name discovery IRI either with an
error code or with a response including all of the terms in the namespace.

Example — [Basic Concepts] defines nine terms whose term names begin with the following
IRL:

https://terms.fhiso.org/types/

This is the namespace of these nine terms, therefore discovery on that IRI either musT yield
an error (if discovery on namespace names is not supported) or MmusT include the following
triples:

<https://terms.fhiso.org/types/constituentDatatype>
— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property>

12

Simple Triples Discovery Mechanism

<https://terms.fhiso.org/types/nonTrivialSupertype>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property> .
<https://terms.fhiso.org/types/Union>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

> <http://www.w3.0rg/2000/01/rdf-schema#Class> .

<https://terms.fhiso.org/types/isAbstract>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property> .
<https://terms.fhiso.org/types/requiredProperty>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property> .
<https://terms.fhiso.org/types/pattern>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property> .
<https://terms.fhiso.org/types/nonTrivialSupertypeCount>

> <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property> .
<https://terms.fhiso.org/types/constituentDatatypeCount>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property> .
<https://terms.fhiso.org/types/Pattern>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/2000/01/rdf-schema#Datatype> .

If in the future FHISO defines further terms in that namespace, the server MusT include
them too.

Otherwise, the required triples sHALL include triples for every required property of the class which is
the type of the discovery IRI. These triples all have the discovery IRI as their subject.

Example — [Basic Concepts] defines a types:pattern term whose type is rdf:Property.
According to §5.2 of [Basic Concepts], rdf : Property has two required properties: rdf : type
and rdfs:range. The set of required triples therefore includes triples whose subjects are
types:pattern and whose predicate is each of these required properties:

<https://terms.fhiso.org/types/pattern>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#Property> .
<https://terms.fhiso.org/types/pattern>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#range>

— <https://terms.fhiso.org/types/Pattern> .

If the discovery IRI is a class name then the required triples sHouLD additionally include type triples for
all known terms whose type is the class being discovered. At the least, this musT include type triples

13

Simple Triples Discovery Mechanism

for any terms with this type that were defined or referenced in the standard which defines the class,
or which have the same namespace as the class.

Example — [CEV Concepts] defines a class cev:SourceDerivation; that standard also de-
fines a term, cev:derivedFrom whose type is that class. Therefore the required triples of
cev:SourceDerivation include the two required properties for an rdfs:Class as well as
the type triple for cev:derivedFrom:

<https://terms.fhiso.org/sources/SourceDerivation>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <http://www.w3.0rg/2000/01/rdf-schema#Class> .
<https://terms.fhiso.org/sources/SourceDerivation>

— <https://terms.fhiso.org/types/requiredProperty>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type> .
<https://terms.fhiso.org/sources/derivedFrom>

— <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>

— <https://terms.fhiso.org/sources/SourceDerivation> .

5 References

5.1 Normative references

[Basic Concepts]
FHISO (Family History Information Standards Organisation). Basic Concepts for Genealogical
Standards. First public draft. (See https://fhiso.org/TR/basic-concepts.)

[N-Triples]
W3C (World Wide Web Consortium). RDF 1.1 N-Triples. David Becket, 2014. W3C Recommen-
dation. (See https://www.w3.0org/TR/n-triples/.)

[RFC 3987]
IETF (Internet Engineering Task Force). RFC 3987: Internationalized Resource Identifiers (IRISs).
Martin Duerst and Michel Suignard, eds., 2005. (See https://tools.ietf.org/html/rfc3987.)

[RFC 7230]
IETF (Internet Engineering Task Force). RFC 7230: Hypertext Transfer Protocol (HTTP/1.1): Mes-
sage Syntax and Routing. Roy Fielding and Julian Reschke, eds., 2014. (See https://tools.ietf.org/
html/rfc7230.)

[RFC 7232]
IETF (Internet Engineering Task Force). RFC 7232: Hypertext Transfer Protocol (HTTP/1.1): Con-
ditional Requests. Roy Fielding and Julian Reschke, eds., 2014. (See https://tools.ietf.org/html/
rfc7232.)

14

https://fhiso.org/TR/basic-concepts
https://www.w3.org/TR/n-triples/
https://tools.ietf.org/html/rfc3987
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7232
https://tools.ietf.org/html/rfc7232

Simple Triples Discovery Mechanism

5.2 Other references

[CEV Concepts]
FHISO (Family History Information Standards Organisation). *Citation Elements: General Con-
cepts”. Third public draft. See https://fhiso.org/TR/cev-concepts.

[Dublin Core]
Dublin Core Metadata Initiative. Dublin Core metadata element set. Dublin Core recommenda-
tion, version 1.1, 1999. See http://dublincore.org/documents/dcmi-terms/.

[RDF Erratal
W3C (World Wide Web Consortium). RDF1.1 Errata. (See https://www.w3.0org/2001/sw/wiki/
RDF1.1_Errata.)

[RDF/XML]
W3C (World Wide Web Consortium). RDF 1.1 XML Syntax. Fabien Gandon and Guus Schreiber,
eds., 2014. W3C Recommendation. (See https://www.w3.org/TR/rdf-syntax-grammar/.)

[REC 7231]
IETF (Internet Engineering Task Force). RFC 7231: Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. Roy Fielding and Julian Reschke, eds., 2014. (See https://tools.ietf.org/
html/rfc7231.)

[SWBP Vocab Pub]
W3C (World Wide Web Consortium). Best Practice Recipes for Publishing RDF Vocabularies.
Diego Berrueta and Jon Phipps, eds., 2008. W3C Working Group Note. (See https://www.w3.
org/TR/swbp-vocab-pub/.)

[Turtle]
W3C (World Wide Web Consortium). RDF 1.1 Turtle. Eric Prud’hommeaux and Gavin
Carothers, eds., 2014. W3C Recommendation. (See https://www.w3.org/TR/turtle/.)

Copyright © 2017-18, Family History Information Standards Organisation, Inc. The text of this stan-
dard is available under the Creative Commons Attribution 4.0 International License.

15

https://fhiso.org/TR/cev-concepts
http://dublincore.org/documents/dcmi-terms/
https://www.w3.org/2001/sw/wiki/RDF1.1_Errata
https://www.w3.org/2001/sw/wiki/RDF1.1_Errata
https://www.w3.org/TR/rdf-syntax-grammar/
https://tools.ietf.org/html/rfc7231
https://tools.ietf.org/html/rfc7231
https://www.w3.org/TR/swbp-vocab-pub/
https://www.w3.org/TR/swbp-vocab-pub/
https://www.w3.org/TR/turtle/
https://fhiso.org/
https://creativecommons.org/licenses/by/4.0/

	Conventions used
	HTTP requests and responses
	N-Triples syntax
	Literals
	Blank nodes
	Other formats

	Required triples
	References
	Normative references
	Other references

